CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Das
NP
ist
(S[dcl]\NP)/(S[adj]\NP)
nicht
(S[adj]\NP)/(S[adj]\NP)
möglich
S[adj]\NP
S[adj]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
!
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Das" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">Das</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ist" data-from="4" data-to="7" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">ist</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="nicht" data-from="8" data-to="13" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">nicht</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="möglich" data-from="14" data-to="21" data-cat="S[adj]\NP"> <tr><td class="token">möglich</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="!" data-from="21" data-to="22" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">!</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Das}{\catNP}{} \& \lexnode*{idm28}{ist}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm49}{nicht}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm63}{möglich}{\catS[adj]\?\catNP}{} \& \lexnode*{idm73}{!}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm42}{idm49-cat}{idm63-cat}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm21}{idm28-cat}{idm42}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm73-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
That's not possible.
eng
That is not possible!
eng
This is impossible!
eng
It can't be!
fra
C'est pas possible !
ita
Non è possibile.
nld
Dat kan niet!
nld
Dat kan niet waar zijn!
rus
Быть не может!
rus
Не может быть!
rus
Это невозможно!
spa
¡No puede ser!
spa
¡No es posible!
ukr
Це неможливо!