CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Es
NP
freut
(S[dcl]\NP)/NP
mich
NP
S[dcl]\NP
>
0
S[dcl]
<
0
,
(S[dcl]\S[dcl])/S[dcl]
Sie
NP
kennenzulernen
S[dcl]\NP
S[dcl]
<
0
!
S[dcl]\S[dcl]
S[dcl]
<
0
S[dcl]\S[dcl]
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Es" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="freut" data-from="3" data-to="8" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">freut</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="mich" data-from="9" data-to="13" data-cat="NP"> <tr><td class="token">mich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="13" data-to="14" data-cat="(S[dcl]\S[dcl])/S[dcl]"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\S[dcl])/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Sie" data-from="15" data-to="18" data-cat="NP"> <tr><td class="token">Sie</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="kennenzulernen" data-from="19" data-to="33" data-cat="S[dcl]\NP"> <tr><td class="token">kennenzulernen</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="!" data-from="33" data-to="34" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">!</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Es}{\catNP}{} \& \lexnode*{idm28}{freut}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm40}{mich}{\catNP}{} \& \lexnode*{idm55}{,}{(\catS[dcl]\?\catS[dcl])/\catS[dcl]}{} \& \lexnode*{idm77}{Sie}{\catNP}{} \& \lexnode*{idm85}{kennenzulernen}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm95}{!}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm21}{idm28-cat}{idm40-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm72}{idm77-cat}{idm85-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm67}{idm72}{idm95-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm48}{idm55-cat}{idm67}{\FC{0}}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm3}{idm8}{idm48}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
I am delighted to meet you.
eng
I'm pleased to meet you.
eng
It's a pleasure to meet you.
eng
Pleased to meet you.
fra
C'est un plaisir de vous rencontrer.
fra
Enchanté de faire votre connaissance.
rus
Приятно познакомиться.
spa
Es un placer conocerlo.