CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Es
NP
S[dcl]/(S[dcl]\NP)
T
>
geht
(S[dcl]\NP)/NP
S[dcl]/NP
>
1
schneller
S[adj]\NP
,
(S[adj]\NP)\(S[adj]\NP)
S[adj]\NP
<
0
(S[adj]\NP)/((S[adj]\NP)\(S[adj]\NP))
T
>
wenn
((S[adj]\NP)\(S[adj]\NP))/S[dcl]
ich
NP
S[dcl]\(S[dcl]/NP)
T
<
((S[adj]\NP)\(S[adj]\NP))\(S[dcl]/NP)
>
1
×
(S[adj]\NP)\(S[dcl]/NP)
>
1
×
S[adj]\NP
<
0
N/N
*
das
NP/N
gerade
(S[dcl]\NP)\NP
(S[dcl]\NP)/N
<
1
×
selbst
N
erledige
S[adj]\NP
,
(S[adj]\NP)\(S[adj]\NP)
S[adj]\NP
<
0
N\N
*
N
<
0
N\(N/N)
T
<
(S[dcl]\NP)\(N/N)
>
1
×
S[dcl]\NP
<
0
(S[dcl]\NP)/((S[dcl]\NP)\(S[dcl]\NP))
T
>
als
((S[dcl]\NP)\(S[dcl]\NP))/S[dcl]
wenn
(S[dcl]/NP)/(S[b]\NP)
(((S[dcl]\NP)\(S[dcl]\NP))/NP)/(S[b]\NP)
>
n
((S[dcl]\NP)/NP)/(S[b]\NP)
>
n
ich
NP
S[dcl]/(S[dcl]\NP)
T
>
es
NP
(S[dcl]\NP)\((S[dcl]\NP)/NP)
T
<
S[dcl]\((S[dcl]\NP)/NP)
>
1
×
S[dcl]/(S[b]\NP)
<
1
×
dir
NP
erkläre
(S[b]\NP)\NP
S[b]\NP
<
0
S[dcl]
>
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="((S[dcl]\NP)/NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="(S[dcl]\NP)/((S[dcl]\NP)\(S[dcl]\NP))"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="N/N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/(S[dcl]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Es" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[dcl]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="geht" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">geht</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[adj]\NP)\(S[dcl]/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="(S[adj]\NP)/((S[adj]\NP)\(S[adj]\NP))"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="schneller" data-from="8" data-to="17" data-cat="S[adj]\NP"> <tr><td class="token">schneller</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="17" data-to="18" data-cat="(S[adj]\NP)\(S[adj]\NP)"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)\(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[adj]\NP)/((S[adj]\NP)\(S[adj]\NP))</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="((S[adj]\NP)\(S[adj]\NP))\(S[dcl]/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="wenn" data-from="19" data-to="23" data-cat="((S[adj]\NP)\(S[adj]\NP))/S[dcl]"> <tr><td class="token">wenn</td></tr> <tr><td class="cat" tabindex="0">((S[adj]\NP)\(S[adj]\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="S[dcl]\(S[dcl]/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="ich" data-from="24" data-to="27" data-cat="NP"> <tr><td class="token">ich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\(S[dcl]/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S[adj]\NP)\(S[adj]\NP))\(S[dcl]/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[adj]\NP)\(S[dcl]/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N/N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\(N/N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="das" data-from="28" data-to="31" data-cat="NP/N"> <tr><td class="token">das</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="gerade" data-from="32" data-to="38" data-cat="(S[dcl]\NP)\NP"> <tr><td class="token">gerade</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/N</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\(N/N)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="selbst" data-from="39" data-to="45" data-cat="N"> <tr><td class="token">selbst</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="erledige" data-from="46" data-to="54" data-cat="S[adj]\NP"> <tr><td class="token">erledige</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="54" data-to="55" data-cat="(S[adj]\NP)\(S[adj]\NP)"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)\(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\(N/N)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\(N/N)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/((S[dcl]\NP)\(S[dcl]\NP))</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(((S[dcl]\NP)\(S[dcl]\NP))/NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="als" data-from="56" data-to="59" data-cat="((S[dcl]\NP)\(S[dcl]\NP))/S[dcl]"> <tr><td class="token">als</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)\(S[dcl]\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="wenn" data-from="60" data-to="64" data-cat="(S[dcl]/NP)/(S[b]\NP)"> <tr><td class="token">wenn</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]/NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(((S[dcl]\NP)\(S[dcl]\NP))/NP)/(S[b]\NP)</div> <div class="rule" title="Forward Composition">> <sup><i>n</i></sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S[dcl]\NP)/NP)/(S[b]\NP)</div> <div class="rule" title="Forward Composition">> <sup><i>n</i></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\((S[dcl]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/(S[dcl]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="ich" data-from="65" data-to="68" data-cat="NP"> <tr><td class="token">ich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[dcl]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[dcl]\NP)\((S[dcl]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="es" data-from="69" data-to="71" data-cat="NP"> <tr><td class="token">es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\((S[dcl]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\((S[dcl]\NP)/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dir" data-from="72" data-to="75" data-cat="NP"> <tr><td class="token">dir</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="erkläre" data-from="76" data-to="83" data-cat="(S[b]\NP)\NP"> <tr><td class="token">erkläre</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="83" data-to="84" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm81}{Es}{\catNP}{} \& \lexnode*{idm89}{geht}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm132}{schneller}{\catS[adj]\?\catNP}{} \& \lexnode*{idm142}{,}{(\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP)}{} \& \lexnode*{idm171}{wenn}{((\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm194}{ich}{\catNP}{} \& \lexnode*{idm222}{das}{\catNP/\catN}{} \& \lexnode*{idm232}{gerade}{(\catS[dcl]\?\catNP)\?\catNP}{} \& \lexnode*{idm256}{selbst}{\catN}{} \& \lexnode*{idm276}{erledige}{\catS[adj]\?\catNP}{} \& \lexnode*{idm286}{,}{(\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP)}{} \& \lexnode*{idm317}{als}{((\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm333}{wenn}{(\catS[dcl]/\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm365}{ich}{\catNP}{} \& \lexnode*{idm384}{es}{\catNP}{} \& \lexnode*{idm399}{dir}{\catNP}{} \& \lexnode*{idm407}{erkläre}{(\catS[b]\?\catNP)\?\catNP}{} \& \lexnode*{idm419}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm74}{idm81-cat}{\FTR}{\catS[dcl]/(\catS[dcl]\?\catNP)}{} \binnode*{idm67}{idm74}{idm89-cat}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm125}{idm132-cat}{idm142-cat}{\BC{0}}{\catS[adj]\?\catNP}{} \unnode*{idm112}{idm125}{\FTR}{(\catS[adj]\?\catNP)/((\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP))}{} \unnode*{idm187}{idm194-cat}{*}{\catS[dcl]\?(\catS[dcl]/\catNP)}{} \binnode*{idm156}{idm171-cat}{idm187}{\FXC{1}}{((\catS[adj]\?\catNP)\?(\catS[adj]\?\catNP))\?(\catS[dcl]/\catNP)}{} \binnode*{idm101}{idm112}{idm156}{\FXC{1}}{(\catS[adj]\?\catNP)\?(\catS[dcl]/\catNP)}{} \binnode*{idm60}{idm67}{idm101}{\BC{0}}{\catS[adj]\?\catNP}{} \unnode*{idm55}{idm60}{*}{\catN/\catN}{} \binnode*{idm213}{idm222-cat}{idm232-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/\catN}{} \binnode*{idm269}{idm276-cat}{idm286-cat}{\BC{0}}{\catS[adj]\?\catNP}{} \unnode*{idm264}{idm269}{*}{\catN\?\catN}{} \binnode*{idm251}{idm256-cat}{idm264}{\BC{0}}{\catN}{} \unnode*{idm244}{idm251}{*}{\catN\?(\catN/\catN)}{} \binnode*{idm202}{idm213}{idm244}{\FXC{1}}{(\catS[dcl]\?\catNP)\?(\catN/\catN)}{} \binnode*{idm48}{idm55}{idm202}{\BC{0}}{\catS[dcl]\?\catNP}{} \unnode*{idm35}{idm48}{\FTR}{(\catS[dcl]\?\catNP)/((\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP))}{} \binnode*{idm300}{idm317-cat}{idm333-cat}{\FC{n}}{(((\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP))/\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm22}{idm35}{idm300}{\FC{n}}{((\catS[dcl]\?\catNP)/\catNP)/(\catS[b]\?\catNP)}{} \unnode*{idm358}{idm365-cat}{\FTR}{\catS[dcl]/(\catS[dcl]\?\catNP)}{} \unnode*{idm373}{idm384-cat}{*}{(\catS[dcl]\?\catNP)\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm347}{idm358}{idm373}{\FXC{1}}{\catS[dcl]\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm13}{idm22}{idm347}{\BXC{1}}{\catS[dcl]/(\catS[b]\?\catNP)}{} \binnode*{idm392}{idm399-cat}{idm407-cat}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm8}{idm13}{idm392}{\FC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm419-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
It'll take longer to tell you how to do it than to just go ahead and do it myself.