CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Es
NP
kann
(S[dcl]\NP)/(S[b]\NP)
nicht
(S[dcl]\NP)\(S[dcl]\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
wahr
S[adj]\NP
sein
(S[b]\NP)\(S[adj]\NP)
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Es" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="kann" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">kann</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="nicht" data-from="8" data-to="13" data-cat="(S[dcl]\NP)\(S[dcl]\NP)"> <tr><td class="token">nicht</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)\(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="wahr" data-from="14" data-to="18" data-cat="S[adj]\NP"> <tr><td class="token">wahr</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="sein" data-from="19" data-to="23" data-cat="(S[b]\NP)\(S[adj]\NP)"> <tr><td class="token">sein</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)\(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="23" data-to="24" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Es}{\catNP}{} \& \lexnode*{idm39}{kann}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm53}{nicht}{(\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm74}{wahr}{\catS[adj]\?\catNP}{} \& \lexnode*{idm84}{sein}{(\catS[b]\?\catNP)\?(\catS[adj]\?\catNP)}{} \& \lexnode*{idm98}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm28}{idm39-cat}{idm53-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm67}{idm74-cat}{idm84-cat}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm21}{idm28}{idm67}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm98-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Das kann nicht wahr sein.
eng
It can't be true.
eng
It cannot be true.
fra
Ça ne peut pas être vrai.
fra
Ça ne peut être vrai.
fra
Cela ne peut être vrai.
fra
Il ne peut pas être vrai.
ita
Non può essere vero.
nld
Dat kan niet waar zijn.
nld
Het kan niet waar zijn.
rus
Это не может быть правдой.
spa
No puede ser cierto.
spa
Eso no puede ser verdad.
ukr
Це не може бути правдою.