CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Fühlen
(S[dcl]\NP)/NP
Sie
NP
S[dcl]/(S[dcl]\NP)
T
>
sich
NP
(S[dcl]\NP)\((S[dcl]\NP)/NP)
T
<
S[dcl]\((S[dcl]\NP)/NP)
>
1
×
S[dcl]
<
0
wie
(S[b]\NP)/(S[b]\NP)
zu
(S[to]\NP)/(S[b]\NP)
Hause
S[b]\NP
(S[b]\NP)\((S[b]\NP)/(S[b]\NP))
T
<
(S[to]\NP)\((S[b]\NP)/(S[b]\NP))
>
1
×
S[to]\NP
<
0
S[dcl]/S[dcl]
*
.
S[dcl]\S[dcl]
S[dcl]\S[dcl]
>
1
×
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Fühlen" data-from="0" data-to="6" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">Fühlen</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\((S[dcl]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/(S[dcl]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Sie" data-from="7" data-to="10" data-cat="NP"> <tr><td class="token">Sie</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[dcl]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[dcl]\NP)\((S[dcl]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="sich" data-from="11" data-to="15" data-cat="NP"> <tr><td class="token">sich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\((S[dcl]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\((S[dcl]\NP)/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/S[dcl]"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="wie" data-from="16" data-to="19" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">wie</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[to]\NP)\((S[b]\NP)/(S[b]\NP))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="zu" data-from="20" data-to="22" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">zu</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[b]\NP)\((S[b]\NP)/(S[b]\NP))"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Hause" data-from="23" data-to="28" data-cat="S[b]\NP"> <tr><td class="token">Hause</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\((S[b]\NP)/(S[b]\NP))</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[to]\NP)\((S[b]\NP)/(S[b]\NP))</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/S[dcl]</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="28" data-to="29" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Fühlen}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm43}{Sie}{\catNP}{} \& \lexnode*{idm62}{sich}{\catNP}{} \& \lexnode*{idm89}{wie}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm118}{zu}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm145}{Hause}{\catS[b]\?\catNP}{} \& \lexnode*{idm155}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm36}{idm43-cat}{\FTR}{\catS[dcl]/(\catS[dcl]\?\catNP)}{} \unnode*{idm51}{idm62-cat}{*}{(\catS[dcl]\?\catNP)\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm25}{idm36}{idm51}{\FXC{1}}{\catS[dcl]\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm8}{idm13-cat}{idm25}{\BC{0}}{\catS[dcl]}{} \unnode*{idm132}{idm145-cat}{*}{(\catS[b]\?\catNP)\?((\catS[b]\?\catNP)/(\catS[b]\?\catNP))}{} \binnode*{idm103}{idm118-cat}{idm132}{\FXC{1}}{(\catS[to]\?\catNP)\?((\catS[b]\?\catNP)/(\catS[b]\?\catNP))}{} \binnode*{idm82}{idm89-cat}{idm103}{\BC{0}}{\catS[to]\?\catNP}{} \unnode*{idm77}{idm82}{*}{\catS[dcl]/\catS[dcl]}{} \binnode*{idm70}{idm77}{idm155-cat}{\FXC{1}}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm3}{idm8}{idm70}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Make yourself at home.
eng
Please make yourself at home.
fra
Faites comme chez vous.
ita
Faccia come se fosse a casa sua.
ita
Fate come se foste a casa vostra.
nld
Doe alsof je thuis bent.
rus
Чувствуйте себя как дома.
spa
Está usted en su casa.
ukr
Почувайтеся, як вдома.
ukr
Почувайтеся як удома.