CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ich
NP
kann
(S[dcl]\NP)/(S[b]\NP)
es
NP
(S[b]\NP)/((S[b]\NP)\NP)
T
>
(S[dcl]\NP)/((S[b]\NP)\NP)
>
1
nicht
(S[dcl]\NP)\(S[dcl]\NP)
(S[dcl]\NP)/((S[b]\NP)\NP)
<
1
×
verstehen
(S[b]\NP)\NP
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ich" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">Ich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/((S[b]\NP)\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/((S[b]\NP)\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="kann" data-from="4" data-to="8" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">kann</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[b]\NP)/((S[b]\NP)\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="es" data-from="9" data-to="11" data-cat="NP"> <tr><td class="token">es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/((S[b]\NP)\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/((S[b]\NP)\NP)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="nicht" data-from="12" data-to="17" data-cat="(S[dcl]\NP)\(S[dcl]\NP)"> <tr><td class="token">nicht</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)\(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/((S[b]\NP)\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="verstehen" data-from="18" data-to="27" data-cat="(S[b]\NP)\NP"> <tr><td class="token">verstehen</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="27" data-to="28" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Ich}{\catNP}{} \& \lexnode*{idm54}{kann}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm79}{es}{\catNP}{} \& \lexnode*{idm87}{nicht}{(\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm101}{verstehen}{(\catS[b]\?\catNP)\?\catNP}{} \& \lexnode*{idm113}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm68}{idm79-cat}{\FTR}{(\catS[b]\?\catNP)/((\catS[b]\?\catNP)\?\catNP)}{} \binnode*{idm41}{idm54-cat}{idm68}{\FC{1}}{(\catS[dcl]\?\catNP)/((\catS[b]\?\catNP)\?\catNP)}{} \binnode*{idm28}{idm41}{idm87-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/((\catS[b]\?\catNP)\?\catNP)}{} \binnode*{idm21}{idm28}{idm101-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm113-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
I can't make head nor tail of it.
eng
I cannot understand it.
fra
Je ne peux le comprendre.
nld
Ik kan het niet begrijpen.
nld
Ik kan het niet verstaan.
rus
Я не могу этого понять.
rus
Я этого не могу понять.
spa
No lo puedo comprender.