CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ich
NP
werde
(S[dcl]\NP)/(S[b]\NP)
dir
NP
dieses
NP/N
Buch
N
NP
>
0
geben
((S[b]\NP)\NP)\NP
(S[b]\NP)\NP
<
0
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ich" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">Ich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="werde" data-from="4" data-to="9" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">werde</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dir" data-from="10" data-to="13" data-cat="NP"> <tr><td class="token">dir</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="dieses" data-from="14" data-to="20" data-cat="NP/N"> <tr><td class="token">dieses</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="Buch" data-from="21" data-to="25" data-cat="N"> <tr><td class="token">Buch</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="geben" data-from="26" data-to="31" data-cat="((S[b]\NP)\NP)\NP"> <tr><td class="token">geben</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)\NP)\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="31" data-to="32" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Ich}{\catNP}{} \& \lexnode*{idm28}{werde}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm49}{dir}{\catNP}{} \& \lexnode*{idm71}{dieses}{\catNP/\catN}{} \& \lexnode*{idm81}{Buch}{\catN}{} \& \lexnode*{idm89}{geben}{((\catS[b]\?\catNP)\?\catNP)\?\catNP}{} \& \lexnode*{idm103}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm66}{idm71-cat}{idm81-cat}{\FC{0}}{\catNP}{} \binnode*{idm57}{idm66}{idm89-cat}{\BC{0}}{(\catS[b]\?\catNP)\?\catNP}{} \binnode*{idm42}{idm49-cat}{idm57}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm21}{idm28-cat}{idm42}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm103-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
I'll give you this book.
eng
I will give you this book.
fra
Je te donnerai ce livre.
ita
Le darò questo libro.
nld
Ik zal jou dit boek geven.
rus
Я дам тебе эту книгу.
spa
Te voy a dar este libro.
spa
Te daré este libro.
ukr
Я тобі дам цю книжку.