CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Schön
N
NP
*
,
((S[dcl]\NP)/(S[to]\NP))/NP
dich
NP
(S[dcl]\NP)/(S[to]\NP)
>
0
zu
(S[to]\NP)/(S[b]\NP)
sehen
S[b]\NP
S[to]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
!
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Schön" data-from="0" data-to="5" data-cat="N"> <tr><td class="token">Schön</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="5" data-to="6" data-cat="((S[dcl]\NP)/(S[to]\NP))/NP"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/(S[to]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="dich" data-from="7" data-to="11" data-cat="NP"> <tr><td class="token">dich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[to]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="zu" data-from="12" data-to="14" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">zu</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="sehen" data-from="15" data-to="20" data-cat="S[b]\NP"> <tr><td class="token">sehen</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="!" data-from="20" data-to="21" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">!</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm16}{Schön}{\catN}{} \& \lexnode*{idm42}{,}{((\catS[dcl]\?\catNP)/(\catS[to]\?\catNP))/\catNP}{} \& \lexnode*{idm58}{dich}{\catNP}{} \& \lexnode*{idm73}{zu}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm87}{sehen}{\catS[b]\?\catNP}{} \& \lexnode*{idm97}{!}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm13}{idm16-cat}{*}{\catNP}{} \binnode*{idm31}{idm42-cat}{idm58-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \binnode*{idm66}{idm73-cat}{idm87-cat}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm24}{idm31}{idm66}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm24}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm97-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Nice to see you.
eng
Happy to see you.
eng
Good to see you.
eng
It is good to see you.
eng
It's good to see you.
fra
C'est bon de te voir.
nld
Blij u te zien.
nld
Ik ben blij je te zien.
nld
Het is goed u te zien.
nld
Het is goed je te zien.
nld
Leuk je te ontmoeten.
por
Que bom te ver.
spa
¡Qué bueno verte!