CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Previous
Next
Parse
auto
visual
HTML
LaTeX
Ο
LRB
Θωμάς
LRB
είπε
LRB
LRB
.
LRB
.
ότι
LRB
LRB
.
θα
LRB
LRB
.
μπορούσε
LRB
LRB
.
να
N
N
.
NP
*
το
LRB
NP
.
κάνει
RRB
αύριο
RRB
RRB
.
αυτό
RRB
.
.
RRB
.
RRB
.
NP
.
<div class="der"> <table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="LRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="LRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="LRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="LRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ο" data-from="0" data-to="1" data-cat="LRB"> <tr><td class="token">Ο</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="LRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Θωμάς" data-from="2" data-to="7" data-cat="LRB"> <tr><td class="token">Θωμάς</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="είπε" data-from="8" data-to="12" data-cat="LRB"> <tr><td class="token">είπε</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">LRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">LRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ότι" data-from="13" data-to="16" data-cat="LRB"> <tr><td class="token">ότι</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">LRB</div> <div class="rule" title="Left Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="θα" data-from="17" data-to="19" data-cat="LRB"> <tr><td class="token">θα</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">LRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="μπορούσε" data-from="20" data-to="28" data-cat="LRB"> <tr><td class="token">μπορούσε</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">LRB</div> <div class="rule" title="Left Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="να" data-from="29" data-to="31" data-cat="N"> <tr><td class="token">να</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Left Remove Punctuation">.</div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="το" data-from="32" data-to="34" data-cat="LRB"> <tr><td class="token">το</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="RRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="RRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="κάνει" data-from="35" data-to="40" data-cat="RRB"> <tr><td class="token">κάνει</td></tr> <tr><td class="cat" tabindex="0">RRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="αύριο" data-from="41" data-to="46" data-cat="RRB"> <tr><td class="token">αύριο</td></tr> <tr><td class="cat" tabindex="0">RRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">RRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="RRB"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="αυτό" data-from="47" data-to="51" data-cat="RRB"> <tr><td class="token">αυτό</td></tr> <tr><td class="cat" tabindex="0">RRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="51" data-to="52" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">RRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">RRB</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm41}{Ο}{\catLRB}{} \& \lexnode*{idm54}{Θωμάς}{\catLRB}{} \& \lexnode*{idm62}{είπε}{\catLRB}{} \& \lexnode*{idm70}{ότι}{\catLRB}{} \& \lexnode*{idm78}{θα}{\catLRB}{} \& \lexnode*{idm86}{μπορούσε}{\catLRB}{} \& \lexnode*{idm94}{να}{\catN}{} \& \lexnode*{idm102}{το}{\catLRB}{} \& \lexnode*{idm120}{κάνει}{\catRRB}{} \& \lexnode*{idm128}{αύριο}{\catRRB}{} \& \lexnode*{idm141}{αυτό}{\catRRB}{} \& \lexnode*{idm149}{.}{\cat.}{} \\ }; \binnode*{idm49}{idm54-cat}{idm62-cat}{.}{\catLRB}{} \binnode*{idm36}{idm41-cat}{idm49}{.}{\catLRB}{} \binnode*{idm31}{idm36}{idm70-cat}{.}{\catLRB}{} \binnode*{idm26}{idm31}{idm78-cat}{.}{\catLRB}{} \binnode*{idm21}{idm26}{idm86-cat}{.}{\catLRB}{} \binnode*{idm16}{idm21}{idm94-cat}{.}{\catN}{} \unnode*{idm13}{idm16}{*}{\catNP}{} \binnode*{idm8}{idm13}{idm102-cat}{.}{\catNP}{} \binnode*{idm115}{idm120-cat}{idm128-cat}{.}{\catRRB}{} \binnode*{idm136}{idm141-cat}{idm149-cat}{.}{\catRRB}{} \binnode*{idm110}{idm115}{idm136}{.}{\catRRB}{} \binnode*{idm3}{idm8}{idm110}{.}{\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Tom said that he'd be able to do that tomorrow.