CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
"
LRB
I
NP
NP
.
see
S[dcl]\NP
,
,
"
LRB
,
.
S[dcl]\NP
.
said
(S[dcl]\NP)/S[dcl]
the
NP/N
blind
N/N
man
N
N
>
0
NP
>
0
S[X]/(S[X]\NP)
T
>
,
,
S[X]/(S[X]\NP)
.
as
((S\NP)\(S\NP))/S[dcl]
he
NP
picked
((S[dcl]\NP)/NP)/PR
up
PR
(S[dcl]\NP)/NP
>
0
his
NP/(N/PP)
hammer
N/PP
NP
>
0
and
conj
saw
N
NP
*
.
.
NP
.
NP\NP
∨
NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
(S\NP)\(S\NP)
>
0
S[X]\(S\NP)
>
1
×
(S[dcl]\NP)\(S\NP)
>
1
×
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token='"' data-from="0" data-to="1" data-cat="LRB"> <tr><td class="token">"</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="I" data-from="1" data-to="2" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Left Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="see" data-from="3" data-to="6" data-cat="S[dcl]\NP"> <tr><td class="token">see</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat=","> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="6" data-to="7" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token='"' data-from="7" data-to="8" data-cat="LRB"> <tr><td class="token">"</td></tr> <tr><td class="cat" tabindex="0">LRB</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">,</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="said" data-from="9" data-to="13" data-cat="(S[dcl]\NP)/S[dcl]"> <tr><td class="token">said</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[X]\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="14" data-to="17" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="blind" data-from="18" data-to="23" data-cat="N/N"> <tr><td class="token">blind</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="man" data-from="24" data-to="27" data-cat="N"> <tr><td class="token">man</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="27" data-to="28" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="as" data-from="29" data-to="31" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">as</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="he" data-from="32" data-to="34" data-cat="NP"> <tr><td class="token">he</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="picked" data-from="35" data-to="41" data-cat="((S[dcl]\NP)/NP)/PR"> <tr><td class="token">picked</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/NP)/PR</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="up" data-from="42" data-to="44" data-cat="PR"> <tr><td class="token">up</td></tr> <tr><td class="cat" tabindex="0">PR</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="his" data-from="45" data-to="48" data-cat="NP/(N/PP)"> <tr><td class="token">his</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="hammer" data-from="49" data-to="55" data-cat="N/PP"> <tr><td class="token">hammer</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="56" data-to="59" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="saw" data-from="60" data-to="63" data-cat="N"> <tr><td class="token">saw</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="63" data-to="64" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[X]\(S\NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\(S\NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{"}{\catLRB}{} \& \lexnode*{idm21}{I}{\catNP}{} \& \lexnode*{idm43}{see}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm58}{,}{\cat,}{} \& \lexnode*{idm66}{"}{\catLRB}{} \& \lexnode*{idm85}{said}{(\catS[dcl]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm127}{the}{\catNP/\catN}{} \& \lexnode*{idm142}{blind}{\catN/\catN}{} \& \lexnode*{idm152}{man}{\catN}{} \& \lexnode*{idm160}{,}{\cat,}{} \& \lexnode*{idm179}{as}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm200}{he}{\catNP}{} \& \lexnode*{idm224}{picked}{((\catS[dcl]\?\catNP)/\catNP)/\catPR}{} \& \lexnode*{idm238}{up}{\catPR}{} \& \lexnode*{idm256}{his}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm268}{hammer}{\catN/\catPP}{} \& \lexnode*{idm285}{and}{\catconj}{} \& \lexnode*{idm301}{saw}{\catN}{} \& \lexnode*{idm309}{.}{\cat.}{} \\ }; \binnode*{idm8}{idm13-cat}{idm21-cat}{.}{\catNP}{} \binnode*{idm53}{idm58-cat}{idm66-cat}{.}{\cat,}{} \binnode*{idm36}{idm43-cat}{idm53}{.}{\catS[dcl]\?\catNP}{} \binnode*{idm137}{idm142-cat}{idm152-cat}{\FC{0}}{\catN}{} \binnode*{idm122}{idm127-cat}{idm137}{\FC{0}}{\catNP}{} \unnode*{idm115}{idm122}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm106}{idm115}{idm160-cat}{.}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm215}{idm224-cat}{idm238-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm251}{idm256-cat}{idm268-cat}{\FC{0}}{\catNP}{} \unnode*{idm298}{idm301-cat}{*}{\catNP}{} \binnode*{idm293}{idm298}{idm309-cat}{.}{\catNP}{} \binnode*{idm278}{idm285-cat}{idm293}{\wedge}{\catNP\?\catNP}{} \binnode*{idm246}{idm251}{idm278}{\BC{0}}{\catNP}{} \binnode*{idm208}{idm215}{idm246}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm195}{idm200-cat}{idm208}{\BC{0}}{\catS[dcl]}{} \binnode*{idm168}{idm179-cat}{idm195}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm97}{idm106}{idm168}{\FXC{1}}{\catS[X]\?(\catS\?\catNP)}{} \binnode*{idm74}{idm85-cat}{idm97}{\FXC{1}}{(\catS[dcl]\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm29}{idm36}{idm74}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm29}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
„Ich blick’s jetzt!“, sagte der blinde Mann, als er sich seinen Hammer und die Bauanleitung griff.
deu
„Ich verstehe“, sagte der blinde Mann, als er seinen Hammer und seine Säge aufhob.
deu
"Ich sehe!", sagte der blinde Mann, nahm den Samen und säte.
fra
« Je vois », dit l'aveugle, tandis qu'il ramassait son marteau et voyait.
fra
« Je vois », dit l'aveugle, tandis qu'il ramassait son marteau et sa scie.
ita
"Capisco", disse l'uomo cieco mentre raccoglieva il suo martello e la sua sega.
nld
"Ik zie", zei de blinde man, toen hij zijn hamer opraapte en zag.
nld
"Ik zie", zei de blinde man, toen hij zijn hamer en zaag opraapte.
por
"Estou vendo", disse o cego enquanto pegava seu martelo e sua serra.
rus
«Понятно», — сказал слепой, подняв свои молоток и пилу.
spa
—Ya veo —dijo el ciego mientras cogía su martillo, y vio.
spa
—Ya veo —dijo el ciego, mientras cogía su martillo y su sierra.