Sentence


Parse

"
LRB
 
So
S/S
 
S/S
.
,
,
 
S/S
.
are
S[dcl]/NP
 
you
NP
 
and
conj
 
Tom
N
 
NP
*
NP\NP
NP
< 0
S[dcl]
> 0
...
.
 
?
.
 
"
RRB
 
.
.
.
.
S[dcl]
.
S[dcl]
> 0
"
N
 
NP
*
Are
(S[dcl]\NP)/NP
 
we
NP
 
S[dcl]\NP
> 0
S[dcl]
< 0
what
S\S
 
?
.
 
S\S
.
"
RRB
 
S\S
.
S[dcl]
< 0
"
LRB
 
Oh
S/S
 
S/S
.
,
,
 
S/S
.
you
NP
 
know
S[dcl]\NP
 
!
.
 
"
RRB
 
.
.
S[dcl]\NP
.
S[dcl]
< 0
S[dcl]
> 0
"
LRB
 
No
S/S
 
S/S
.
,
,
 
S/S
.
I
NP
 
do
(S[dcl]\NP)/(S[b]\NP)
 
n't
(S\NP)\(S\NP)
 
(S[dcl]\NP)/(S[b]\NP)
< 1×
know
S[b]\NP
 
.
.
 
S[b]\NP
.
S[dcl]\NP
> 0
S[dcl]
< 0
S[dcl]
> 0
Spit
((S[b]\NP)/PR)/NP
 
it
NP
 
(S[b]\NP)/PR
> 0
out
PR
 
!
.
 
"
RRB
 
.
.
PR
.
S[b]\NP
> 0
"
LRB
 
Well
N
 
NP
*
NP
.
,
,
 
an
NP/N
 
item
N
 
NP
> 0
NP\NP
.
.
 
NP\NP
.
"
RRB
 
NP\NP
.
NP
< 0
"
LRB
 
What
S[intj]
 
?
.
 
S[intj]
.
S[intj]
.
Me
NP
 
and
conj
 
Tom
N
 
NP
*
?
.
 
NP
.
NP\NP
NP
< 0
Do
(S[b]\NP)/(S[b]\NP)
 
n't
S\S
 
(S[b]\NP)/(S[b]\NP)
< n
be
(S[b]\NP)/(S[adj]\NP)
 
daft
S[adj]\NP
 
!
.
 
S[adj]\NP
.
S[b]\NP
> 0
S[b]\NP
> 0
What
NP/(S[dcl]\NP)
 
makes
((S[dcl]\NP)/(S[b]\NP))/NP
 
you
NP
 
(S[dcl]\NP)/(S[b]\NP)
> 0
think
(S[b]\NP)/NP
 
that
NP
 
?
.
 
NP
.
"
RRB
 
NP
.
S[b]\NP
> 0
S[dcl]\NP
> 0
NP
> 0

Use with der.css.

Use with ccgsym.sty and tikzlibraryccgder.code.tex.