CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
A
NP/N
still
N/N
life
N/PP
by
PP/NP
a
NP/N
Dutch
N/N
painter
N
N
>
0
NP
>
0
PP
>
0
N
>
0
N
>
0
NP
>
0
is
(S[dcl]\NP)/(S[ng]\NP)
hanging
S[ng]\NP
S[dcl]\NP
>
0
in
((S\NP)\(S\NP))/NP
his
NP/(N/PP)
room
N/PP
NP
>
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="A" data-from="0" data-to="1" data-cat="NP/N"> <tr><td class="token">A</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="still" data-from="2" data-to="7" data-cat="N/N"> <tr><td class="token">still</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="life" data-from="8" data-to="12" data-cat="N/PP"> <tr><td class="token">life</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="by" data-from="13" data-to="15" data-cat="PP/NP"> <tr><td class="token">by</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="16" data-to="17" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Dutch" data-from="18" data-to="23" data-cat="N/N"> <tr><td class="token">Dutch</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="painter" data-from="24" data-to="31" data-cat="N"> <tr><td class="token">painter</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="32" data-to="34" data-cat="(S[dcl]\NP)/(S[ng]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[ng]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="hanging" data-from="35" data-to="42" data-cat="S[ng]\NP"> <tr><td class="token">hanging</td></tr> <tr><td class="cat" tabindex="0">S[ng]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="in" data-from="43" data-to="45" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">in</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="his" data-from="46" data-to="49" data-cat="NP/(N/PP)"> <tr><td class="token">his</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="room" data-from="50" data-to="54" data-cat="N/PP"> <tr><td class="token">room</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="54" data-to="55" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{A}{\catNP/\catN}{} \& \lexnode*{idm33}{still}{\catN/\catN}{} \& \lexnode*{idm48}{life}{\catN/\catPP}{} \& \lexnode*{idm63}{by}{\catPP/\catNP}{} \& \lexnode*{idm78}{a}{\catNP/\catN}{} \& \lexnode*{idm93}{Dutch}{\catN/\catN}{} \& \lexnode*{idm103}{painter}{\catN}{} \& \lexnode*{idm125}{is}{(\catS[dcl]\?\catNP)/(\catS[ng]\?\catNP)}{} \& \lexnode*{idm139}{hanging}{\catS[ng]\?\catNP}{} \& \lexnode*{idm160}{in}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm181}{his}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm193}{room}{\catN/\catPP}{} \& \lexnode*{idm203}{.}{\cat.}{} \\ }; \binnode*{idm88}{idm93-cat}{idm103-cat}{\FC{0}}{\catN}{} \binnode*{idm73}{idm78-cat}{idm88}{\FC{0}}{\catNP}{} \binnode*{idm58}{idm63-cat}{idm73}{\FC{0}}{\catPP}{} \binnode*{idm43}{idm48-cat}{idm58}{\FC{0}}{\catN}{} \binnode*{idm28}{idm33-cat}{idm43}{\FC{0}}{\catN}{} \binnode*{idm13}{idm18-cat}{idm28}{\FC{0}}{\catNP}{} \binnode*{idm118}{idm125-cat}{idm139-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm176}{idm181-cat}{idm193-cat}{\FC{0}}{\catNP}{} \binnode*{idm149}{idm160-cat}{idm176}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm111}{idm118}{idm149}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm111}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm203-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
In seinem Zimmer hängt ein Stillleben eines niederländischen Malers.
eng
A still life by a Dutch painter hangs in his room.
fra
Dans sa chambre est accrochée une nature morte d'un peintre néerlandais.
fra
Dans sa chambre est suspendue une nature morte d'un peintre hollandais.
nld
Een stilleven van een Nederlandse schilder hangt in zijn kamer.
nld
In zijn kamer hangt een stilleven van een Nederlandse schilder.
nld
Er hangt een stilleven van een Nederlandse schilder in zijn kamer.