CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[b]\NP)/NP
what
NP/(S[dcl]/NP)
you
NP
S[X]/(S[X]\NP)
T
>
have
(S[dcl]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
do
(S[b]\NP)/NP
.
.
(S[b]\NP)/NP
.
(S[to]\NP)/NP
>
1
(S[dcl]\NP)/NP
>
1
S[dcl]/NP
>
1
NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[b]\NP)/NP"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="what" data-from="3" data-to="7" data-cat="NP/(S[dcl]/NP)"> <tr><td class="token">what</td></tr> <tr><td class="cat" tabindex="0">NP/(S[dcl]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="you" data-from="8" data-to="11" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="have" data-from="12" data-to="16" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">have</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[to]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="17" data-to="19" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="20" data-to="22" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="22" data-to="23" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[to]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm10}{Do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm27}{what}{\catNP/(\catS[dcl]/\catNP)}{} \& \lexnode*{idm53}{you}{\catNP}{} \& \lexnode*{idm70}{have}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm93}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm116}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm128}{.}{\cat.}{} \\ }; \unnode*{idm46}{idm53-cat}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm107}{idm116-cat}{idm128-cat}{.}{(\catS[b]\?\catNP)/\catNP}{} \binnode*{idm84}{idm93-cat}{idm107}{\FC{1}}{(\catS[to]\?\catNP)/\catNP}{} \binnode*{idm61}{idm70-cat}{idm84}{\FC{1}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm39}{idm46}{idm61}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm22}{idm27-cat}{idm39}{\FC{0}}{\catNP}{} \binnode*{idm3}{idm10-cat}{idm22}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Tu, was du tun musst!
eng
Do what you have to.
fra
Faites ce que vous avez à faire.
fra
Fais ce que tu as à faire.
ita
Fai quello che devi fare.
ita
Fate quello che dovete fare.
ita
Faccia quello che deve fare.
nld
Doe wat je moet doen.
nld
Doe wat ge moet doen.
por
Faça o que tem de fazer.
por
Façam o que têm de fazer.
rus
Делай то, что должен.
spa
Haz lo que tienes que hacer.