CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[q]/(S[b]\NP))/NP
you
NP
S[q]/(S[b]\NP)
>
0
know
(S[b]\NP)/NP
what
NP/(S[dcl]/NP)
it
NP
S[X]/(S[X]\NP)
T
>
is
(S[dcl]\NP)/PP
like
PP/NP
(S[dcl]\NP)/NP
>
1
S[dcl]/NP
>
1
NP
>
0
S[b]\NP
>
0
to
((S\NP)\(S\NP))/(S[b]\NP)
be
(S[b]\NP)/(S[adj]\NP)
really
(S[adj]\NP)/(S[adj]\NP)
hungry
S[adj]\NP
S[adj]\NP
>
0
?
.
S[adj]\NP
.
S[b]\NP
>
0
(S\NP)\(S\NP)
>
0
S[b]\NP
<
0
S[q]
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[q]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[q]/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[q]/(S[b]\NP))/NP"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[q]/(S[b]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="3" data-to="6" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]/(S[b]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="know" data-from="7" data-to="11" data-cat="(S[b]\NP)/NP"> <tr><td class="token">know</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="what" data-from="12" data-to="16" data-cat="NP/(S[dcl]/NP)"> <tr><td class="token">what</td></tr> <tr><td class="cat" tabindex="0">NP/(S[dcl]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="it" data-from="17" data-to="19" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="20" data-to="22" data-cat="(S[dcl]\NP)/PP"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="like" data-from="23" data-to="27" data-cat="PP/NP"> <tr><td class="token">like</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="28" data-to="30" data-cat="((S\NP)\(S\NP))/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="be" data-from="31" data-to="33" data-cat="(S[b]\NP)/(S[adj]\NP)"> <tr><td class="token">be</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="really" data-from="34" data-to="40" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">really</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="hungry" data-from="41" data-to="47" data-cat="S[adj]\NP"> <tr><td class="token">hungry</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="?" data-from="47" data-to="48" data-cat="."> <tr><td class="token">?</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[q]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm17}{Do}{(\catS[q]/(\catS[b]\?\catNP))/\catNP}{} \& \lexnode*{idm31}{you}{\catNP}{} \& \lexnode*{idm53}{know}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm70}{what}{\catNP/(\catS[dcl]/\catNP)}{} \& \lexnode*{idm96}{it}{\catNP}{} \& \lexnode*{idm113}{is}{(\catS[dcl]\?\catNP)/\catPP}{} \& \lexnode*{idm125}{like}{\catPP/\catNP}{} \& \lexnode*{idm146}{to}{((\catS\?\catNP)\?(\catS\?\catNP))/(\catS[b]\?\catNP)}{} \& \lexnode*{idm171}{be}{(\catS[b]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm199}{really}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm213}{hungry}{\catS[adj]\?\catNP}{} \& \lexnode*{idm223}{?}{\cat.}{} \\ }; \binnode*{idm8}{idm17-cat}{idm31-cat}{\FC{0}}{\catS[q]/(\catS[b]\?\catNP)}{} \unnode*{idm89}{idm96-cat}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm104}{idm113-cat}{idm125-cat}{\FC{1}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm82}{idm89}{idm104}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm65}{idm70-cat}{idm82}{\FC{0}}{\catNP}{} \binnode*{idm46}{idm53-cat}{idm65}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm192}{idm199-cat}{idm213-cat}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm185}{idm192}{idm223-cat}{.}{\catS[adj]\?\catNP}{} \binnode*{idm164}{idm171-cat}{idm185}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm135}{idm146-cat}{idm164}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm39}{idm46}{idm135}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm8}{idm39}{\FC{0}}{\catS[q]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Weißt du, was es heißt, wirklich hungrig zu sein?
deu
Wissen Sie, was es heißt, wirklich hungrig zu sein?
fra
Savez-vous ce que c'est d'être réellement affamé ?
nld
Weet ge wat het is, echt honger hebben?
nld
Weet je wat het is om echt honger te hebben?
por
Você sabe o que é passar realmente fome?
rus
Ты знаешь, что такое настоящий голод?
rus
Ты знаешь, что такое быть по-настоящему голодным?
spa
¿Sabes lo que es estar realmente hambriento?