CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[b]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[b]\NP)/(S[b]\NP)
<
1
×
act
(S[b]\NP)/PP
like
PP/NP
a
NP/N
child
N
NP
>
0
.
.
NP
.
PP
>
0
S[b]\NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="2" data-to="5" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="act" data-from="6" data-to="9" data-cat="(S[b]\NP)/PP"> <tr><td class="token">act</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="like" data-from="10" data-to="14" data-cat="PP/NP"> <tr><td class="token">like</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="15" data-to="16" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="child" data-from="17" data-to="22" data-cat="N"> <tr><td class="token">child</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="22" data-to="23" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Do}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm35}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm56}{act}{(\catS[b]\?\catNP)/\catPP}{} \& \lexnode*{idm73}{like}{\catPP/\catNP}{} \& \lexnode*{idm93}{a}{\catNP/\catN}{} \& \lexnode*{idm103}{child}{\catN}{} \& \lexnode*{idm111}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm21-cat}{idm35-cat}{\BXC{1}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm88}{idm93-cat}{idm103-cat}{\FC{0}}{\catNP}{} \binnode*{idm83}{idm88}{idm111-cat}{.}{\catNP}{} \binnode*{idm68}{idm73-cat}{idm83}{\FC{0}}{\catPP}{} \binnode*{idm49}{idm56-cat}{idm68}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10}{idm49}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Benimm dich nicht wie ein Kind!
deu
Benehmen Sie sich nicht wie ein Kind!
rus
Не ведите себя как ребёнок.
rus
Не веди себя как ребёнок.
ukr
Не поводься, як дитина.
ukr
Не поводьтеся, як дитина.