CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[b]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[b]\NP)/(S[b]\NP)
<
1
×
be
(S[b]\NP)/PP
in
PP/NP
such
NP/NP
a
NP/N
hurry
N
NP
>
0
.
.
NP
.
NP
>
0
PP
>
0
S[b]\NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="2" data-to="5" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="be" data-from="6" data-to="8" data-cat="(S[b]\NP)/PP"> <tr><td class="token">be</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="in" data-from="9" data-to="11" data-cat="PP/NP"> <tr><td class="token">in</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="such" data-from="12" data-to="16" data-cat="NP/NP"> <tr><td class="token">such</td></tr> <tr><td class="cat" tabindex="0">NP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="17" data-to="18" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="hurry" data-from="19" data-to="24" data-cat="N"> <tr><td class="token">hurry</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="24" data-to="25" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Do}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm35}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm56}{be}{(\catS[b]\?\catNP)/\catPP}{} \& \lexnode*{idm73}{in}{\catPP/\catNP}{} \& \lexnode*{idm88}{such}{\catNP/\catNP}{} \& \lexnode*{idm108}{a}{\catNP/\catN}{} \& \lexnode*{idm118}{hurry}{\catN}{} \& \lexnode*{idm126}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm21-cat}{idm35-cat}{\BXC{1}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm103}{idm108-cat}{idm118-cat}{\FC{0}}{\catNP}{} \binnode*{idm98}{idm103}{idm126-cat}{.}{\catNP}{} \binnode*{idm83}{idm88-cat}{idm98}{\FC{0}}{\catNP}{} \binnode*{idm68}{idm73-cat}{idm83}{\FC{0}}{\catPP}{} \binnode*{idm49}{idm56-cat}{idm68}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10}{idm49}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Nur nicht so eilig.
deu
Sei nicht in solch einer Eile.
fra
Ne soyez pas si pressées !
fra
Il ne faut pas être si pressé.
ita
Non essere così frettoloso.
lit
Neskubėk taip.
por
Não tenha tanta pressa.
rus
Не спешите так!
rus
Не надо так торопиться.
rus
Не спеши так!
rus
Не надо так спешить.
spa
No tengas tanta prisa.
spa
No tengáis tanta prisa.
ukr
Не поспішай так.
ukr
Не поспішайте так.
ukr
Не треба так поспішати.