CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[b]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[b]\NP)/(S[b]\NP)
<
1
×
confuse
(S[b]\NP)/NP
desire
N/PP
with
PP/NP
love
N
NP
*
.
.
NP
.
PP
>
0
N
>
0
NP
*
S[b]\NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="2" data-to="5" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="confuse" data-from="6" data-to="13" data-cat="(S[b]\NP)/NP"> <tr><td class="token">confuse</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="desire" data-from="14" data-to="20" data-cat="N/PP"> <tr><td class="token">desire</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="with" data-from="21" data-to="25" data-cat="PP/NP"> <tr><td class="token">with</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="love" data-from="26" data-to="30" data-cat="N"> <tr><td class="token">love</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Do}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm35}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm56}{confuse}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm76}{desire}{\catN/\catPP}{} \& \lexnode*{idm91}{with}{\catPP/\catNP}{} \& \lexnode*{idm109}{love}{\catN}{} \& \lexnode*{idm117}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm21-cat}{idm35-cat}{\BXC{1}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \unnode*{idm106}{idm109-cat}{*}{\catNP}{} \binnode*{idm101}{idm106}{idm117-cat}{.}{\catNP}{} \binnode*{idm86}{idm91-cat}{idm101}{\FC{0}}{\catPP}{} \binnode*{idm71}{idm76-cat}{idm86}{\FC{0}}{\catN}{} \unnode*{idm68}{idm71}{*}{\catNP}{} \binnode*{idm49}{idm56-cat}{idm68}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10}{idm49}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Verwechsle nicht Lust mit Liebe.
deu
Verwechsle nicht Begierde mit Liebe.
fra
Ne confonds pas le désir avec l’amour.
ita
Non confondete il desiderio con l'amore.
ita
Non confondere il desiderio con l'amore.
ita
Non confonda il desiderio con l'amore.
nld
Verwar verlangen niet met liefde.
rus
Не путай страсть с любовью.
rus
Не путай вожделение с любовью.
rus
Не путай желание с любовью.
spa
No confundas deseo con amor.
tlh
neHqu'ghach parmaq je tImISmoHQo'!
ukr
Не плутай бажання з коханням.