CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Good-hearted
N/N
women
N
N
>
0
NP
*
are
(S[dcl]\NP)/(S[adj]\NP)
always
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[adj]\NP)
<
1
×
beautiful
S[adj]\NP
,
,
S[adj]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
but
conj
beautiful
N/N
women
N
N
>
0
NP
*
are
(S[dcl]\NP)/(S[pss]\NP)
not
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[pss]\NP)
<
1
×
always
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[pss]\NP)
<
1
×
good-hearted
S[pss]\NP
.
.
S[pss]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]\S[dcl]
∨
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Good-hearted" data-from="0" data-to="12" data-cat="N/N"> <tr><td class="token">Good-hearted</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="women" data-from="13" data-to="18" data-cat="N"> <tr><td class="token">women</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="19" data-to="22" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="always" data-from="23" data-to="29" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">always</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[adj]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="beautiful" data-from="30" data-to="39" data-cat="S[adj]\NP"> <tr><td class="token">beautiful</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="39" data-to="40" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="but" data-from="41" data-to="44" data-cat="conj"> <tr><td class="token">but</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="beautiful" data-from="45" data-to="54" data-cat="N/N"> <tr><td class="token">beautiful</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="women" data-from="55" data-to="60" data-cat="N"> <tr><td class="token">women</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[pss]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[pss]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="61" data-to="64" data-cat="(S[dcl]\NP)/(S[pss]\NP)"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pss]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="not" data-from="65" data-to="68" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">not</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[pss]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="always" data-from="69" data-to="75" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">always</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[pss]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[pss]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="good-hearted" data-from="76" data-to="88" data-cat="S[pss]\NP"> <tr><td class="token">good-hearted</td></tr> <tr><td class="cat" tabindex="0">S[pss]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="88" data-to="89" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pss]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Good-hearted}{\catN/\catN}{} \& \lexnode*{idm31}{women}{\catN}{} \& \lexnode*{idm57}{are}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm71}{always}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm92}{beautiful}{\catS[adj]\?\catNP}{} \& \lexnode*{idm102}{,}{\cat,}{} \& \lexnode*{idm117}{but}{\catconj}{} \& \lexnode*{idm138}{beautiful}{\catN/\catN}{} \& \lexnode*{idm148}{women}{\catN}{} \& \lexnode*{idm185}{are}{(\catS[dcl]\?\catNP)/(\catS[pss]\?\catNP)}{} \& \lexnode*{idm199}{not}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm213}{always}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm234}{good-hearted}{\catS[pss]\?\catNP}{} \& \lexnode*{idm244}{.}{\cat.}{} \\ }; \binnode*{idm16}{idm21-cat}{idm31-cat}{\FC{0}}{\catN}{} \unnode*{idm13}{idm16}{*}{\catNP}{} \binnode*{idm46}{idm57-cat}{idm71-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm85}{idm92-cat}{idm102-cat}{.}{\catS[adj]\?\catNP}{} \binnode*{idm39}{idm46}{idm85}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm39}{\BC{0}}{\catS[dcl]}{} \binnode*{idm133}{idm138-cat}{idm148-cat}{\FC{0}}{\catN}{} \unnode*{idm130}{idm133}{*}{\catNP}{} \binnode*{idm174}{idm185-cat}{idm199-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[pss]\?\catNP)}{} \binnode*{idm163}{idm174}{idm213-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[pss]\?\catNP)}{} \binnode*{idm227}{idm234-cat}{idm244-cat}{.}{\catS[pss]\?\catNP}{} \binnode*{idm156}{idm163}{idm227}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm125}{idm130}{idm156}{\BC{0}}{\catS[dcl]}{} \binnode*{idm110}{idm117-cat}{idm125}{\wedge}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm3}{idm8}{idm110}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Gutherzige Frauen sind immer hübsch, aber hübsche Frauen sind nicht immer gutherzig.
deu
Gutherzige Frauen sind immer schön, aber schöne Frauen sind nicht immer gutherzig.
por
Mulheres de bom coração são sempre belas, mas nem sempre uma bela mulher tem bom coração.
rus
Женщины с добрым сердцем всегда красивы, но у красивых женщин не всегда доброе сердце.
spa
Las mujeres con buen corazón siempre son bonitas, pero las mujeres bonitas no siempre tienen buen corazón.