CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
He
NP
and
conj
I
NP
NP\NP
∨
NP
<
0
are
(S[dcl]\NP)/NP
almost
(S\NP)\(S\NP)
(S[dcl]\NP)/NP
<
1
×
the
NP/N
same
N/N
height
N
N
>
0
NP
>
0
.
.
NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="He" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">He</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="3" data-to="6" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="I" data-from="7" data-to="8" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="9" data-to="12" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="almost" data-from="13" data-to="19" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">almost</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="20" data-to="23" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="same" data-from="24" data-to="28" data-cat="N/N"> <tr><td class="token">same</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="height" data-from="29" data-to="35" data-cat="N"> <tr><td class="token">height</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="35" data-to="36" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{He}{\catNP}{} \& \lexnode*{idm28}{and}{\catconj}{} \& \lexnode*{idm36}{I}{\catNP}{} \& \lexnode*{idm60}{are}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm72}{almost}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm96}{the}{\catNP/\catN}{} \& \lexnode*{idm111}{same}{\catN/\catN}{} \& \lexnode*{idm121}{height}{\catN}{} \& \lexnode*{idm129}{.}{\cat.}{} \\ }; \binnode*{idm21}{idm28-cat}{idm36-cat}{\wedge}{\catNP\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catNP}{} \binnode*{idm51}{idm60-cat}{idm72-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm106}{idm111-cat}{idm121-cat}{\FC{0}}{\catN}{} \binnode*{idm91}{idm96-cat}{idm106}{\FC{0}}{\catNP}{} \binnode*{idm86}{idm91}{idm129-cat}{.}{\catNP}{} \binnode*{idm44}{idm51}{idm86}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm44}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Er und ich sind fast gleich groß.
fra
Lui et moi avons presque la même taille.
fra
Lui et moi sommes presque de la même taille.
ita
Io e lui abbiamo quasi la stessa altezza.
nld
Hij en ik zijn bijna even groot.
por
Eu e ele somos quase da mesma altura.
rus
Мы с ним почти одного роста.
spa
Él y yo somos casi de la misma altura.
ukr
Ми з ним майже одного зросту.