CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
He
NP
proved
(S[dcl]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
be
(S[b]\NP)/NP
an
NP/N
ideal
N/N
husband
N
N
>
0
NP
>
0
.
.
NP
.
S[b]\NP
>
0
S[to]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="He" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">He</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="proved" data-from="3" data-to="9" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">proved</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="10" data-to="12" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="be" data-from="13" data-to="15" data-cat="(S[b]\NP)/NP"> <tr><td class="token">be</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="an" data-from="16" data-to="18" data-cat="NP/N"> <tr><td class="token">an</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ideal" data-from="19" data-to="24" data-cat="N/N"> <tr><td class="token">ideal</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="husband" data-from="25" data-to="32" data-cat="N"> <tr><td class="token">husband</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="32" data-to="33" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{He}{\catNP}{} \& \lexnode*{idm23}{proved}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm44}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm65}{be}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm87}{an}{\catNP/\catN}{} \& \lexnode*{idm102}{ideal}{\catN/\catN}{} \& \lexnode*{idm112}{husband}{\catN}{} \& \lexnode*{idm120}{.}{\cat.}{} \\ }; \binnode*{idm97}{idm102-cat}{idm112-cat}{\FC{0}}{\catN}{} \binnode*{idm82}{idm87-cat}{idm97}{\FC{0}}{\catNP}{} \binnode*{idm77}{idm82}{idm120-cat}{.}{\catNP}{} \binnode*{idm58}{idm65-cat}{idm77}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Er stellte sich als idealer Ehemann heraus.
deu
Er hat sich als idealer Ehemann herausgestellt.
fra
Il s'avéra être un mari idéal.
ita
Ha dimostrato di essere un marito ideale.
ita
Lui ha dimostrato di essere un marito ideale.
por
Ele provou ser um marido ideal.
rus
Он оказался идеальным мужем.
spa
Resultó ser un esposo ideal.