CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'd
(S[dcl]\NP)/(S[b]\NP)
buy
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
S[dcl]\NP
>
0
if
((S\NP)\(S\NP))/S[dcl]
I
NP
were
S[dcl]\NP
S[dcl]
<
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
n't
(S\NP)\(S\NP)
S[dcl]\NP
<
0
broke
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'d" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'d</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="buy" data-from="4" data-to="7" data-cat="(S[b]\NP)/NP"> <tr><td class="token">buy</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="8" data-to="10" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="if" data-from="11" data-to="13" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">if</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="14" data-to="15" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="were" data-from="16" data-to="20" data-cat="S[dcl]\NP"> <tr><td class="token">were</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="20" data-to="23" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="broke" data-from="24" data-to="29" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">broke</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="29" data-to="30" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm44}{'d}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm65}{buy}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm77}{it}{\catNP}{} \& \lexnode*{idm96}{if}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm117}{I}{\catNP}{} \& \lexnode*{idm125}{were}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm135}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm160}{broke}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm174}{.}{\cat.}{} \\ }; \binnode*{idm58}{idm65-cat}{idm77-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm112}{idm117-cat}{idm125-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm85}{idm96-cat}{idm112}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm30}{idm37}{idm85}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm23}{idm30}{idm135-cat}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm149}{idm160-cat}{idm174-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm149}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich würde es kaufen, wenn ich nicht pleite wäre.
ell
Άμα δεν ήμουν ταπί, θα τον αγόραζα.
ell
Θα το αγόραζα, αν δεν ήμουν ταπί.
ell
Άμα δεν ήμουν ταπί, θα τ' αγόραζα.
ell
Θα τον αγόραζα, αν δεν ήμουν ταπί.
ell
Αν δεν ήμουν απένταρη, θα τ' αγόραζα.
ell
Άμα δεν ήμουν ταπί, θα το αγόραζα.
ell
Αν δεν ήμουν απένταρος, θα τ' αγόραζα.
ell
Θα την αγόραζα, αν δεν ήμουν ταπί.
ell
Αν δεν ήμουν ταπί, θα το αγόραζα.
ell
Αν δεν ήμουν ταπί, θα τ' αγόραζα.
ell
Άμα δεν ήμουν ταπί, θα την αγόραζα.
eng
If I weren't broke, I'd buy it.
ita
Lo comprerei se non fossi al verde.
ita
La comprerei se non fossi al verde.
nld
Als ik niet blut was zou ik het kopen.
ukr
Якби я не був на мілі, я б його купив.
ukr
Якби я не був на мілі, я б її купив.