CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'll
(S[dcl]\NP)/(S[b]\NP)
leave
((S[b]\NP)/PR)/NP
it
NP
(S[b]\NP)/PR
>
0
up
PR
S[b]\NP
>
0
S[dcl]\NP
>
0
to
((S\NP)\(S\NP))/NP
your
NP/(N/PP)
imagination
N/PP
NP
>
0
.
.
NP
.
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="1" data-to="4" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/PR"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="leave" data-from="5" data-to="10" data-cat="((S[b]\NP)/PR)/NP"> <tr><td class="token">leave</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/PR)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="11" data-to="13" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/PR</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="up" data-from="14" data-to="16" data-cat="PR"> <tr><td class="token">up</td></tr> <tr><td class="cat" tabindex="0">PR</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="17" data-to="19" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="your" data-from="20" data-to="24" data-cat="NP/(N/PP)"> <tr><td class="token">your</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="imagination" data-from="25" data-to="36" data-cat="N/PP"> <tr><td class="token">imagination</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="36" data-to="37" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm30}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm60}{leave}{((\catS[b]\?\catNP)/\catPR)/\catNP}{} \& \lexnode*{idm74}{it}{\catNP}{} \& \lexnode*{idm82}{up}{\catPR}{} \& \lexnode*{idm101}{to}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm127}{your}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm139}{imagination}{\catN/\catPP}{} \& \lexnode*{idm149}{.}{\cat.}{} \\ }; \binnode*{idm51}{idm60-cat}{idm74-cat}{\FC{0}}{(\catS[b]\?\catNP)/\catPR}{} \binnode*{idm44}{idm51}{idm82-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm23}{idm30-cat}{idm44}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm122}{idm127-cat}{idm139-cat}{\FC{0}}{\catNP}{} \binnode*{idm117}{idm122}{idm149-cat}{.}{\catNP}{} \binnode*{idm90}{idm101-cat}{idm117}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm90}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Das überlasse ich deiner Phantasie.
deu
Das überlasse ich deiner Vorstellungskraft.
deu
Das überlasse ich Ihrer Vorstellungskraft.
deu
Das überlasse ich eurer Phantasie.
deu
Das überlasse ich eurer Vorstellungskraft.
deu
Das überlasse ich Ihrer Phantasie.
fra
Je laisse cela à votre imagination.
fra
Je laisse cela à ton imagination.
ita
Lo lascerò alla tua immaginazione.
rus
Я оставлю это на ваше усмотрение.