CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'll
(S[dcl]\NP)/(S[b]\NP)
let
((S[b]\NP)/(S[b]\NP))/NP
you
NP
(S[b]\NP)/(S[b]\NP)
>
0
know
S[b]\NP
S[b]\NP
>
0
S[dcl]\NP
>
0
as
((S\NP)\(S\NP))/((S\NP)\(S\NP))
soon
(S\NP)\(S\NP)
as
(((S\NP)\(S\NP))\((S\NP)\(S\NP)))/S[dcl]
I
NP
get
S[dcl]\NP
S[dcl]
<
0
((S\NP)\(S\NP))\((S\NP)\(S\NP))
>
0
(S\NP)\(S\NP)
<
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
there
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="1" data-to="4" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="let" data-from="5" data-to="8" data-cat="((S[b]\NP)/(S[b]\NP))/NP"> <tr><td class="token">let</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/(S[b]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="9" data-to="12" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="know" data-from="13" data-to="17" data-cat="S[b]\NP"> <tr><td class="token">know</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="as" data-from="18" data-to="20" data-cat="((S\NP)\(S\NP))/((S\NP)\(S\NP))"> <tr><td class="token">as</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/((S\NP)\(S\NP))</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="soon" data-from="21" data-to="25" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">soon</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="((S\NP)\(S\NP))\((S\NP)\(S\NP))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="as" data-from="26" data-to="28" data-cat="(((S\NP)\(S\NP))\((S\NP)\(S\NP)))/S[dcl]"> <tr><td class="token">as</td></tr> <tr><td class="cat" tabindex="0">(((S\NP)\(S\NP))\((S\NP)\(S\NP)))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="29" data-to="30" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="get" data-from="31" data-to="34" data-cat="S[dcl]\NP"> <tr><td class="token">get</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S\NP)\(S\NP))\((S\NP)\(S\NP))</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="there" data-from="35" data-to="40" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">there</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="40" data-to="41" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm37}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm69}{let}{((\catS[b]\?\catNP)/(\catS[b]\?\catNP))/\catNP}{} \& \lexnode*{idm85}{you}{\catNP}{} \& \lexnode*{idm93}{know}{\catS[b]\?\catNP}{} \& \lexnode*{idm114}{as}{((\catS\?\catNP)\?(\catS\?\catNP))/((\catS\?\catNP)\?(\catS\?\catNP))}{} \& \lexnode*{idm147}{soon}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm180}{as}{(((\catS\?\catNP)\?(\catS\?\catNP))\?((\catS\?\catNP)\?(\catS\?\catNP)))/\catS[dcl]}{} \& \lexnode*{idm209}{I}{\catNP}{} \& \lexnode*{idm217}{get}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm238}{there}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm252}{.}{\cat.}{} \\ }; \binnode*{idm58}{idm69-cat}{idm85-cat}{\FC{0}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm51}{idm58}{idm93-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm30}{idm37-cat}{idm51}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm204}{idm209-cat}{idm217-cat}{\BC{0}}{\catS[dcl]}{} \binnode*{idm161}{idm180-cat}{idm204}{\FC{0}}{((\catS\?\catNP)\?(\catS\?\catNP))\?((\catS\?\catNP)\?(\catS\?\catNP))}{} \binnode*{idm136}{idm147-cat}{idm161}{\BC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm103}{idm114-cat}{idm136}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm23}{idm30}{idm103}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm227}{idm238-cat}{idm252-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm227}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich sage dir Bescheid, sobald ich da bin.
ita
Le farò sapere appena arrivo lì.
ita
Ti farò sapere appena arrivo lì.
ita
Vi farò sapere appena arrivo lì.
nld
Ik laat je iets weten zodra ik daar ben.
rus
Я тебе сообщу, как только доеду дотуда.
rus
Я сообщу тебе, как только буду там.
rus
Я дам вам знать, как только доберусь туда.
spa
Así que llegue le avisaré.