CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'm
(S[dcl]\NP)/(S[adj]\NP)
not
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[adj]\NP)
<
1
×
at
((S\NP)\(S\NP))/NP
all
NP
(S\NP)\(S\NP)
>
0
(S[dcl]\NP)/(S[adj]\NP)
<
1
×
tired
S[adj]\NP
.
.
S[adj]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'m" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'m</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="not" data-from="4" data-to="7" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">not</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[adj]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="at" data-from="8" data-to="10" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">at</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="all" data-from="11" data-to="14" data-cat="NP"> <tr><td class="token">all</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[adj]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="tired" data-from="15" data-to="20" data-cat="S[adj]\NP"> <tr><td class="token">tired</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="20" data-to="21" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm45}{'m}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm59}{not}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm84}{at}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm100}{all}{\catNP}{} \& \lexnode*{idm115}{tired}{\catS[adj]\?\catNP}{} \& \lexnode*{idm125}{.}{\cat.}{} \\ }; \binnode*{idm34}{idm45-cat}{idm59-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm73}{idm84-cat}{idm100-cat}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm23}{idm34}{idm73}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm108}{idm115-cat}{idm125-cat}{.}{\catS[adj]\?\catNP}{} \binnode*{idm16}{idm23}{idm108}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich bin überhaupt nicht müde.
deu
Ich bin kein bisschen müde.
deu
Ich bin gar nicht müde.
ell
Δεν είμαι καθόλου κουρασμένη.
ell
Δεν είμαι καθόλου κουρασμένος.
eng
I'm not tired at all.
eng
I'm not a bit tired.
fra
Je ne suis pas fatiguée du tout.
fra
Je ne suis pas fatigué du tout.
fra
Je ne suis pas du tout fatigué.
ita
Non sono affatto stanca.
ita
Non sono affatto stanco.
ita
Non sono per niente stanco.
nld
Ik ben absoluut niet moe.
nld
Ik ben helemaal niet moe.
por
Não estou nem um pouco cansado.
rus
Я совсем не устала.
rus
Я совсем не устал.
spa
No estoy nada cansada.
spa
No estoy cansado en absoluto.
spa
No estoy nada cansado.
ukr
Я зовсім не втомився.