CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'm
(S[dcl]\NP)/(S[adj]\NP)
so
(S[adj]\NP)/(S[adj]\NP)
happy
(S[adj]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
see
(S[b]\NP)/NP
you
NP
S[b]\NP
>
0
S[to]\NP
>
0
S[adj]\NP
>
0
again
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[adj]\NP
<
0
S[adj]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'m" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'m</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="so" data-from="4" data-to="6" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">so</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="happy" data-from="7" data-to="12" data-cat="(S[adj]\NP)/(S[to]\NP)"> <tr><td class="token">happy</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="13" data-to="15" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="see" data-from="16" data-to="19" data-cat="(S[b]\NP)/NP"> <tr><td class="token">see</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="20" data-to="23" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="again" data-from="24" data-to="29" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">again</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="29" data-to="30" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{'m}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm44}{so}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm72}{happy}{(\catS[adj]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm93}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm114}{see}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm126}{you}{\catNP}{} \& \lexnode*{idm145}{again}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm159}{.}{\cat.}{} \\ }; \binnode*{idm107}{idm114-cat}{idm126-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm86}{idm93-cat}{idm107}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm65}{idm72-cat}{idm86}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm134}{idm145-cat}{idm159-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm58}{idm65}{idm134}{\BC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich freue mich ja so, euch wiederzusehen!
deu
Ich freue mich so, dich wiederzusehen!
deu
Ich freue mich ja so, Sie wiederzusehen!
deu
Ich freue mich ja so, dich wiederzusehen!
ell
Είμαι τόσο χαρούμενος που σε ξαναβλέπω.
fra
Je suis si heureux de te revoir.
ita
Sono così felice di rivederti.
nld
Ik ben zo blij je weer te zien.
por
Estou muito feliz de te ver de novo.
por
Eu estou muito feliz de te ver de novo.
rus
Я так рад снова тебя видеть.
rus
Я так счастлив снова тебя видеть.
rus
Я так рад снова вас видеть.
rus
Я так счастлив снова вас видеть.
spa
Estoy tan feliz de verte de nuevo.
ukr
Я такий радий знову тебе бачити.
ukr
Я така рада знову вас бачити.
ukr
Я такий радий знову вас бачити.
ukr
Я така рада знову тебе бачити.