CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'm
(S[dcl]\NP)/(S[adj]\NP)
sorry
(S[adj]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
call
(S[b]\NP)/NP
you
NP
S[b]\NP
>
0
S[to]\NP
>
0
so
((S\NP)\(S\NP))/((S\NP)\(S\NP))
late
(S\NP)\(S\NP)
(S\NP)\(S\NP)
>
0
S[to]\NP
<
0
at
((S\NP)\(S\NP))/NP
night
N
NP
*
.
.
NP
.
(S\NP)\(S\NP)
>
0
S[to]\NP
<
0
S[adj]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'m" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'m</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="sorry" data-from="4" data-to="9" data-cat="(S[adj]\NP)/(S[to]\NP)"> <tr><td class="token">sorry</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="10" data-to="12" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="call" data-from="13" data-to="17" data-cat="(S[b]\NP)/NP"> <tr><td class="token">call</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="18" data-to="21" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="so" data-from="22" data-to="24" data-cat="((S\NP)\(S\NP))/((S\NP)\(S\NP))"> <tr><td class="token">so</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/((S\NP)\(S\NP))</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="late" data-from="25" data-to="29" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">late</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="at" data-from="30" data-to="32" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">at</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="night" data-from="33" data-to="38" data-cat="N"> <tr><td class="token">night</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="38" data-to="39" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{'m}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm44}{sorry}{(\catS[adj]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm79}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm100}{call}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm112}{you}{\catNP}{} \& \lexnode*{idm131}{so}{((\catS\?\catNP)\?(\catS\?\catNP))/((\catS\?\catNP)\?(\catS\?\catNP))}{} \& \lexnode*{idm153}{late}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm178}{at}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm202}{night}{\catN}{} \& \lexnode*{idm210}{.}{\cat.}{} \\ }; \binnode*{idm93}{idm100-cat}{idm112-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm72}{idm79-cat}{idm93}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm120}{idm131-cat}{idm153-cat}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm65}{idm72}{idm120}{\BC{0}}{\catS[to]\?\catNP}{} \unnode*{idm199}{idm202-cat}{*}{\catNP}{} \binnode*{idm194}{idm199}{idm210-cat}{.}{\catNP}{} \binnode*{idm167}{idm178-cat}{idm194}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm58}{idm65}{idm167}{\BC{0}}{\catS[to]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Tut mir leid, dass ich euch so spät abends anrufe.
deu
Tut mir leid, dass ich Sie so spät abends anrufe.
deu
Tut mir leid, dass ich dich so spät abends anrufe.
fra
Je suis désolé de t'appeler si tard le soir.
fra
Je suis désolée de vous appeler si tard dans la nuit.
por
Sinto ter de chamá-lo tão tarde.
rus
Прости, что звоню так поздно.
rus
Простите, что так поздно звоню.
rus
Прошу прощения за столь поздний звонок.