CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'm
(S[dcl]\NP)/(S[adj]\NP)
sure
(S[adj]\NP)/S[dcl]
she
NP
will
(S[dcl]\NP)/(S[b]\NP)
turn
(S[b]\NP)/PR
up
PR
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
S[adj]\NP
>
0
S[dcl]\NP
>
0
soon
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'m" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'m</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="sure" data-from="4" data-to="8" data-cat="(S[adj]\NP)/S[dcl]"> <tr><td class="token">sure</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="she" data-from="9" data-to="12" data-cat="NP"> <tr><td class="token">she</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="will" data-from="13" data-to="17" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">will</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="turn" data-from="18" data-to="22" data-cat="(S[b]\NP)/PR"> <tr><td class="token">turn</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/PR</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="up" data-from="23" data-to="25" data-cat="PR"> <tr><td class="token">up</td></tr> <tr><td class="cat" tabindex="0">PR</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="soon" data-from="26" data-to="30" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">soon</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm30}{'m}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm51}{sure}{(\catS[adj]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm68}{she}{\catNP}{} \& \lexnode*{idm83}{will}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm104}{turn}{(\catS[b]\?\catNP)/\catPR}{} \& \lexnode*{idm116}{up}{\catPR}{} \& \lexnode*{idm135}{soon}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm149}{.}{\cat.}{} \\ }; \binnode*{idm97}{idm104-cat}{idm116-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm76}{idm83-cat}{idm97}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm63}{idm68-cat}{idm76}{\BC{0}}{\catS[dcl]}{} \binnode*{idm44}{idm51-cat}{idm63}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm23}{idm30-cat}{idm44}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm124}{idm135-cat}{idm149-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm124}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich bin mir sicher, dass sie bald auftauchen wird.
fra
Je suis certain qu'elle va bientôt surgir.
ita
Sono sicuro che si farà viva presto.
ita
Io sono sicuro che si farà viva presto.
ita
Io sono sicura che si farà viva presto.
ita
Sono sicuro che lei si farà viva presto.
ita
Sono sicura che lei si farà viva presto.
ita
Sono sicura che si farà viva presto.
ita
Io sono sicura che lei si farà viva presto.
ita
Io sono sicuro che lei si farà viva presto.
rus
Я уверен, она скоро появится.
spa
Estoy seguro de que ella aparecerá pronto.