CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
'm
(S[dcl]\NP)/(S[adj]\NP)
very
(S[adj]\NP)/(S[adj]\NP)
glad
(S[adj]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
see
(S[b]\NP)/NP
you
NP
S[b]\NP
>
0
S[to]\NP
>
0
again
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[to]\NP
<
0
S[adj]\NP
>
0
S[adj]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'m" data-from="1" data-to="3" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'m</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="very" data-from="4" data-to="8" data-cat="(S[adj]\NP)/(S[adj]\NP)"> <tr><td class="token">very</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="glad" data-from="9" data-to="13" data-cat="(S[adj]\NP)/(S[to]\NP)"> <tr><td class="token">glad</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="14" data-to="16" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="see" data-from="17" data-to="20" data-cat="(S[b]\NP)/NP"> <tr><td class="token">see</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="21" data-to="24" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="again" data-from="25" data-to="30" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">again</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{'m}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm44}{very}{(\catS[adj]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm65}{glad}{(\catS[adj]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm93}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm114}{see}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm126}{you}{\catNP}{} \& \lexnode*{idm145}{again}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm159}{.}{\cat.}{} \\ }; \binnode*{idm107}{idm114-cat}{idm126-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm86}{idm93-cat}{idm107}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm134}{idm145-cat}{idm159-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm79}{idm86}{idm134}{\BC{0}}{\catS[to]\?\catNP}{} \binnode*{idm58}{idm65-cat}{idm79}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich freue mich sehr, dich wiederzusehen!
deu
Ich freue mich sehr, Sie wiederzusehen!
deu
Ich freue mich sehr, euch wiederzusehen!
fra
Je suis très contente de vous revoir.
fra
Je suis très content de te revoir.
fra
Je suis très contente de te revoir.
fra
Je suis très content de vous revoir.
rus
Очень рад видеть Вас снова!
rus
Очень рада снова тебя видеть.
rus
Очень рада видеть Вас снова!
rus
Очень рад видеть тебя снова.
spa
Me alegra mucho verte otra vez.
ukr
Я дуже радий знову з вами побачитися.
ukr
Я дуже рада знову з тобою побачитися.
ukr
Я дуже рада знову з вами побачитися.
ukr
Я дуже радий знову з тобою побачитися.