CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
ca
(S[dcl]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
stand
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
S[dcl]\NP
>
0
anymore
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ca" data-from="2" data-to="4" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">ca</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="4" data-to="7" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="stand" data-from="8" data-to="13" data-cat="(S[b]\NP)/NP"> <tr><td class="token">stand</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="14" data-to="16" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="anymore" data-from="17" data-to="24" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">anymore</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="24" data-to="25" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm41}{ca}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm55}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm76}{stand}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm88}{it}{\catNP}{} \& \lexnode*{idm107}{anymore}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm121}{.}{\cat.}{} \\ }; \binnode*{idm30}{idm41-cat}{idm55-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm69}{idm76-cat}{idm88-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm23}{idm30}{idm69}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm96}{idm107-cat}{idm121-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm96}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich halte das nicht mehr aus!
deu
Ich kann es nicht mehr ertragen.
deu
Ich kann nicht mehr.
deu
Ich halte es nicht mehr aus!
deu
Ich ertrage das nicht mehr.
ell
Δεν αντέχω άλλο!
fra
Je n'arrive plus à le supporter.
fra
J'en peux plus !
fra
Je ne peux plus supporter ça.
fra
Je ne parviens plus à le supporter.
fra
Je n'en peux plus !
fra
Je ne peux plus le supporter.
nld
Ik kan er niet meer tegen!
por
Eu não aguento mais!
por
Não aguento mais!
rus
Я больше не могу это выносить.
spa
No lo aguanto más.
spa
¡No lo aguanto más!
tgl
Hindi ko na kaya.
ukr
Я більше не можу цього виносити.
ukr
Я більше не можу!