CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
can
(S[dcl]\NP)/(S[b]\NP)
understand
(S[b]\NP)/NP
what
NP/(S[dcl]/NP)
she
NP
S[X]/(S[X]\NP)
T
>
is
(S[dcl]\NP)/(S[ng]\NP)
saying
(S[ng]\NP)/NP
.
.
(S[ng]\NP)/NP
.
(S[dcl]\NP)/NP
>
1
S[dcl]/NP
>
1
NP
>
0
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="can" data-from="2" data-to="5" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">can</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="understand" data-from="6" data-to="16" data-cat="(S[b]\NP)/NP"> <tr><td class="token">understand</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="what" data-from="17" data-to="21" data-cat="NP/(S[dcl]/NP)"> <tr><td class="token">what</td></tr> <tr><td class="cat" tabindex="0">NP/(S[dcl]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="she" data-from="22" data-to="25" data-cat="NP"> <tr><td class="token">she</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="26" data-to="28" data-cat="(S[dcl]\NP)/(S[ng]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[ng]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[ng]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="saying" data-from="29" data-to="35" data-cat="(S[ng]\NP)/NP"> <tr><td class="token">saying</td></tr> <tr><td class="cat" tabindex="0">(S[ng]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="35" data-to="36" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[ng]\NP)/NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{can}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm44}{understand}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm61}{what}{\catNP/(\catS[dcl]/\catNP)}{} \& \lexnode*{idm87}{she}{\catNP}{} \& \lexnode*{idm104}{is}{(\catS[dcl]\?\catNP)/(\catS[ng]\?\catNP)}{} \& \lexnode*{idm127}{saying}{(\catS[ng]\?\catNP)/\catNP}{} \& \lexnode*{idm139}{.}{\cat.}{} \\ }; \unnode*{idm80}{idm87-cat}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm118}{idm127-cat}{idm139-cat}{.}{(\catS[ng]\?\catNP)/\catNP}{} \binnode*{idm95}{idm104-cat}{idm118}{\FC{1}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm73}{idm80}{idm95}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm56}{idm61-cat}{idm73}{\FC{0}}{\catNP}{} \binnode*{idm37}{idm44-cat}{idm56}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich kann verstehen, was sie sagt.
fra
Je peux comprendre ce qu'elle dit.
nld
Ik kan begrijpen wat ze zegt.
por
Eu consigo entender o que ela está dizendo.
rus
Я могу понять, что она говорит.
spa
Entiendo lo que ella dice.