CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
do
(S[dcl]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
give
(S[b]\NP)/NP
a
NP/N
damn
N/PP
about
PP/NP
it
NP
PP
>
0
N
>
0
NP
>
0
.
.
NP
.
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="2" data-to="4" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="4" data-to="7" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="give" data-from="8" data-to="12" data-cat="(S[b]\NP)/NP"> <tr><td class="token">give</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="13" data-to="14" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="damn" data-from="15" data-to="19" data-cat="N/PP"> <tr><td class="token">damn</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="about" data-from="20" data-to="25" data-cat="PP/NP"> <tr><td class="token">about</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="26" data-to="28" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="28" data-to="29" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm34}{do}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm48}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm69}{give}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm91}{a}{\catNP/\catN}{} \& \lexnode*{idm106}{damn}{\catN/\catPP}{} \& \lexnode*{idm121}{about}{\catPP/\catNP}{} \& \lexnode*{idm131}{it}{\catNP}{} \& \lexnode*{idm139}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm34-cat}{idm48-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm116}{idm121-cat}{idm131-cat}{\FC{0}}{\catPP}{} \binnode*{idm101}{idm106-cat}{idm116}{\FC{0}}{\catN}{} \binnode*{idm86}{idm91-cat}{idm101}{\FC{0}}{\catNP}{} \binnode*{idm81}{idm86}{idm139-cat}{.}{\catNP}{} \binnode*{idm62}{idm69-cat}{idm81}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23}{idm62}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Da pfeif ich drauf.
deu
Das ist mir scheißegal.
ell
Δεκάρα δε δίνω.
ell
Χέστηκα.
ell
Δε μου καίγεται καρφί γι' αυτό.
eng
I don't give a damn about it!
fra
J'en ai rien à foutre.
fra
Je n'en ai rien à faire.
ita
Non me ne frega niente.
ita
Non me ne frega nulla.
nld
Het kan me geen reet schelen.
nld
Het kan me geen barst schelen.
por
Eu não estou nem aí.
rus
Мне плевать на это.
rus
Мне наплевать на это.
spa
Me importa un carajo.
spa
Me la suda.
spa
Me importa una mierda.
spa
Me importa tres cojones.
spa
Me importa un comino.
spa
No estoy ni ahí.
tlh
vISaHHa'chu' jay'.