CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
do
(S[dcl]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
know
(S[b]\NP)/S[qem]
whether
S[qem]/S[dcl]
he
NP
'll
(S[dcl]\NP)/(S[b]\NP)
come
S[b]\NP
S[dcl]\NP
>
0
S[dcl]
<
0
S[qem]
>
0
S[b]\NP
>
0
by
((S\NP)\(S\NP))/NP
train
N
NP
*
(S\NP)\(S\NP)
>
0
or
conj
by
((S\NP)\(S\NP))/NP
car
N
NP
*
(S\NP)\(S\NP)
>
0
((S\NP)\(S\NP))\((S\NP)\(S\NP))
∨
.
.
((S\NP)\(S\NP))\((S\NP)\(S\NP))
.
(S\NP)\(S\NP)
<
0
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="2" data-to="4" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="4" data-to="7" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="know" data-from="8" data-to="12" data-cat="(S[b]\NP)/S[qem]"> <tr><td class="token">know</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/S[qem]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[qem]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="whether" data-from="13" data-to="20" data-cat="S[qem]/S[dcl]"> <tr><td class="token">whether</td></tr> <tr><td class="cat" tabindex="0">S[qem]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="he" data-from="21" data-to="23" data-cat="NP"> <tr><td class="token">he</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="23" data-to="26" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="come" data-from="27" data-to="31" data-cat="S[b]\NP"> <tr><td class="token">come</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[qem]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="by" data-from="32" data-to="34" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">by</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="train" data-from="35" data-to="40" data-cat="N"> <tr><td class="token">train</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="((S\NP)\(S\NP))\((S\NP)\(S\NP))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="((S\NP)\(S\NP))\((S\NP)\(S\NP))"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="or" data-from="41" data-to="43" data-cat="conj"> <tr><td class="token">or</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="by" data-from="44" data-to="46" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">by</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="car" data-from="47" data-to="50" data-cat="N"> <tr><td class="token">car</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S\NP)\(S\NP))\((S\NP)\(S\NP))</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="50" data-to="51" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S\NP)\(S\NP))\((S\NP)\(S\NP))</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm34}{do}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm48}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm76}{know}{(\catS[b]\?\catNP)/\catS[qem]}{} \& \lexnode*{idm93}{whether}{\catS[qem]/\catS[dcl]}{} \& \lexnode*{idm108}{he}{\catNP}{} \& \lexnode*{idm123}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm137}{come}{\catS[b]\?\catNP}{} \& \lexnode*{idm169}{by}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm188}{train}{\catN}{} \& \lexnode*{idm234}{or}{\catconj}{} \& \lexnode*{idm253}{by}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm272}{car}{\catN}{} \& \lexnode*{idm280}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm34-cat}{idm48-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm116}{idm123-cat}{idm137-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm103}{idm108-cat}{idm116}{\BC{0}}{\catS[dcl]}{} \binnode*{idm88}{idm93-cat}{idm103}{\FC{0}}{\catS[qem]}{} \binnode*{idm69}{idm76-cat}{idm88}{\FC{0}}{\catS[b]\?\catNP}{} \unnode*{idm185}{idm188-cat}{*}{\catNP}{} \binnode*{idm158}{idm169-cat}{idm185}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \unnode*{idm269}{idm272-cat}{*}{\catNP}{} \binnode*{idm242}{idm253-cat}{idm269}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm215}{idm234-cat}{idm242}{\wedge}{((\catS\?\catNP)\?(\catS\?\catNP))\?((\catS\?\catNP)\?(\catS\?\catNP))}{} \binnode*{idm196}{idm215}{idm280-cat}{.}{((\catS\?\catNP)\?(\catS\?\catNP))\?((\catS\?\catNP)\?(\catS\?\catNP))}{} \binnode*{idm147}{idm158}{idm196}{\BC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm62}{idm69}{idm147}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23}{idm62}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich weiß nicht, ob er mit dem Zug oder mit dem Auto kommen wird.
fra
J'ignore s'il viendra en train ou en voiture.
fra
Je ne sais pas s'il viendra par le train ou en voiture.
ita
Non so se lui verrà in treno o in macchina.
ita
Io non so se verrà in treno o in auto.
ita
Io non so se verrà in treno o in macchina.
ita
Non so se lui verrà in treno o in auto.
ita
Non so se verrà in treno o in auto.
ita
Non so se verrà in treno o in macchina.
ita
Io non so se lui verrà in treno o in auto.
ita
Non so se verrà in treno o in automobile.
ita
Io non so se verrà in treno o in automobile.
ita
Io non so se lui verrà in treno o in automobile.
ita
Io non so se lui verrà in treno o in macchina.
ita
Non so se lui verrà in treno o in automobile.
por
Eu não sei se ele virá de trem ou de carro.
por
Não sei se ele virá de trem ou de carro.
por
Não sei se ele virá de comboio ou de carro.
rus
Уж не знаю, на поезде или на машине он приедет.
rus
Не знаю, приедет ли он на поезде или на машине.
rus
Не знаю, на поезде или на машине он приедет.
rus
Я не знаю, приедет ли он на поезде или на машине.
rus
Уж не знаю, приедет ли он на поезде или на машине.
rus
Я не знаю, на поезде или на машине он приедет.