CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
have
(S[dcl]\NP)/(S[pt]\NP)
got
(S[pt]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
go
S[b]\NP
now
(S\NP)\(S\NP)
S[b]\NP
<
0
S[to]\NP
>
0
S[pt]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="have" data-from="2" data-to="6" data-cat="(S[dcl]\NP)/(S[pt]\NP)"> <tr><td class="token">have</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pt]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[pt]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="got" data-from="7" data-to="10" data-cat="(S[pt]\NP)/(S[to]\NP)"> <tr><td class="token">got</td></tr> <tr><td class="cat" tabindex="0">(S[pt]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="11" data-to="13" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="go" data-from="14" data-to="16" data-cat="S[b]\NP"> <tr><td class="token">go</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="now" data-from="17" data-to="20" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">now</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pt]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="20" data-to="21" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{I}{\catNP}{} \& \lexnode*{idm28}{have}{(\catS[dcl]\?\catNP)/(\catS[pt]\?\catNP)}{} \& \lexnode*{idm49}{got}{(\catS[pt]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm70}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm91}{go}{\catS[b]\?\catNP}{} \& \lexnode*{idm101}{now}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm115}{.}{\cat.}{} \\ }; \binnode*{idm84}{idm91-cat}{idm101-cat}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm63}{idm70-cat}{idm84}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm42}{idm49-cat}{idm63}{\FC{0}}{\catS[pt]\?\catNP}{} \binnode*{idm21}{idm28-cat}{idm42}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm115-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich muss jetzt gehen.
deu
Ich muss jetzt weg.
ell
Πρέπει να φύγω τώρα.
eng
I've got to go now.
fra
Je dois partir maintenant.
fra
Il faut que j'y aille maintenant.
ita
Devo partire ora.
ita
Devo andare adesso.
lat
Debeo nunc abire.
nld
Ik moet nu gaan.
por
Eu tenho que sair agora.
por
Eu tenho que ir agora.
rus
Мне уже надо идти.
rus
Я должна сейчас уйти.
spa
Tengo que irme ahora.
spa
Ya me tengo que ir.
spa
Ahora tengo que irme.
spa
Ahora me tengo que ir.
ukr
Зараз мені треба йти.