CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
must
(S[dcl]\NP)/(S[b]\NP)
go
S[b]\NP
now
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="must" data-from="2" data-to="6" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">must</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="go" data-from="7" data-to="9" data-cat="S[b]\NP"> <tr><td class="token">go</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="now" data-from="10" data-to="13" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">now</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="13" data-to="14" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{must}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm44}{go}{\catS[b]\?\catNP}{} \& \lexnode*{idm65}{now}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm79}{.}{\cat.}{} \\ }; \binnode*{idm54}{idm65-cat}{idm79-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm37}{idm44-cat}{idm54}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich muss jetzt gehen.
deu
Ich muss jetzt los.
fra
Je dois partir maintenant.
fra
Je dois y aller maintenant.
ita
Io devo andare adesso.
ita
Devo partire ora.
ita
Io devo andare ora.
ita
Devo andare ora.
ita
Devo andare adesso.
lat
Nunc abeundum mihi est.
nld
Ik moet nu gaan.
rus
Сейчас я должен идти.
spa
Tengo que irme ahora.
spa
Ya me tengo que ir.
spa
Ahora tengo que irme.
spa
Yo tengo que irme en este momento.
tlh
DaH jImejnIS.
ukr
Зараз мені треба йти.