CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
must
(S[dcl]\NP)/(S[b]\NP)
go
S[b]\NP
.
.
S[b]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="must" data-from="2" data-to="6" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">must</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="go" data-from="7" data-to="9" data-cat="S[b]\NP"> <tr><td class="token">go</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="9" data-to="10" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{must}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm44}{go}{\catS[b]\?\catNP}{} \& \lexnode*{idm54}{.}{\cat.}{} \\ }; \binnode*{idm37}{idm44-cat}{idm54-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich muss gehen.
fra
Il faut que je m'en aille.
fra
Il me faut y aller.
fra
Il faut que j'y aille.
fra
Je dois m'en aller.
fra
Je dois partir.
fra
Il me faut partir.
fra
Il me faut m'en aller.
fra
Je dois y aller.
lat
Abeundum mihi est.
lat
Oportet me abire.
nld
Ik moet gaan.
rus
Я должен пойти.
rus
Я должен идти.
rus
Я должен поехать.
ukr
Я повинен йти.
ukr
Я мушу йти.