CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
think
(S[dcl]\NP)/S[dcl]
they
NP
do
((S[dcl]\NP)/PP)/NP
that
NP
(S[dcl]\NP)/PP
>
0
on
PP/NP
purpose
N
NP
*
.
.
NP
.
PP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="think" data-from="2" data-to="7" data-cat="(S[dcl]\NP)/S[dcl]"> <tr><td class="token">think</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="they" data-from="8" data-to="12" data-cat="NP"> <tr><td class="token">they</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="13" data-to="15" data-cat="((S[dcl]\NP)/PP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/PP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="that" data-from="16" data-to="20" data-cat="NP"> <tr><td class="token">that</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="on" data-from="21" data-to="23" data-cat="PP/NP"> <tr><td class="token">on</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="purpose" data-from="24" data-to="31" data-cat="N"> <tr><td class="token">purpose</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="31" data-to="32" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm23}{think}{(\catS[dcl]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm40}{they}{\catNP}{} \& \lexnode*{idm64}{do}{((\catS[dcl]\?\catNP)/\catPP)/\catNP}{} \& \lexnode*{idm78}{that}{\catNP}{} \& \lexnode*{idm91}{on}{\catPP/\catNP}{} \& \lexnode*{idm109}{purpose}{\catN}{} \& \lexnode*{idm117}{.}{\cat.}{} \\ }; \binnode*{idm55}{idm64-cat}{idm78-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/\catPP}{} \unnode*{idm106}{idm109-cat}{*}{\catNP}{} \binnode*{idm101}{idm106}{idm117-cat}{.}{\catNP}{} \binnode*{idm86}{idm91-cat}{idm101}{\FC{0}}{\catPP}{} \binnode*{idm48}{idm55}{idm86}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm35}{idm40-cat}{idm48}{\BC{0}}{\catS[dcl]}{} \binnode*{idm16}{idm23-cat}{idm35}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich glaube, das machen die mit Absicht.
ell
Νομίζω ότι το κάνουν επίτηδες αυτό.
ell
Νομίζω ότι αυτό το κάνουνε επίτηδες.
fra
Je pense qu'elles le font exprès.
fra
Je pense qu'ils le font exprès.
nld
Ik denk dat ze dat met opzet doen.
nld
Ik denk dat ze dat expres doen.
por
Eu acho que eles fazem isso de propósito.
rus
Думаю, они делают это нарочно.
rus
По-моему, они это специально делают.
spa
Creo que hicieron eso aposta.
ukr
Я думаю, вони це роблять навмисно.