CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
I
NP
told
((S[dcl]\NP)/S[em])/NP
her
NP
(S[dcl]\NP)/S[em]
>
0
that
S[em]/S[dcl]
she
NP
was
(S[dcl]\NP)/(S[adj]\NP)
right
S[adj]\NP
.
.
S[adj]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
S[em]
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="0" data-to="1" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="told" data-from="2" data-to="6" data-cat="((S[dcl]\NP)/S[em])/NP"> <tr><td class="token">told</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/S[em])/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="her" data-from="7" data-to="10" data-cat="NP"> <tr><td class="token">her</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="that" data-from="11" data-to="15" data-cat="S[em]/S[dcl]"> <tr><td class="token">that</td></tr> <tr><td class="cat" tabindex="0">S[em]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="she" data-from="16" data-to="19" data-cat="NP"> <tr><td class="token">she</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="20" data-to="23" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="right" data-from="24" data-to="29" data-cat="S[adj]\NP"> <tr><td class="token">right</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="29" data-to="30" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{I}{\catNP}{} \& \lexnode*{idm32}{told}{((\catS[dcl]\?\catNP)/\catS[em])/\catNP}{} \& \lexnode*{idm46}{her}{\catNP}{} \& \lexnode*{idm59}{that}{\catS[em]/\catS[dcl]}{} \& \lexnode*{idm74}{she}{\catNP}{} \& \lexnode*{idm89}{was}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm110}{right}{\catS[adj]\?\catNP}{} \& \lexnode*{idm120}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm32-cat}{idm46-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/\catS[em]}{} \binnode*{idm103}{idm110-cat}{idm120-cat}{.}{\catS[adj]\?\catNP}{} \binnode*{idm82}{idm89-cat}{idm103}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm69}{idm74-cat}{idm82}{\BC{0}}{\catS[dcl]}{} \binnode*{idm54}{idm59-cat}{idm69}{\FC{0}}{\catS[em]}{} \binnode*{idm16}{idm23}{idm54}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ich sagte ihr, dass sie recht habe.
fra
Je lui ai dit qu'elle avait raison.
ita
Le dissi che aveva ragione.
ita
Io le ho detto che aveva ragione.
ita
Le ho detto che aveva ragione.
ita
Io le dissi che aveva ragione.
lat
Dixi ei eam verum dicere.
rus
Я ей сказал, что она была права.
rus
Я сказал ей, что она права.
spa
Le dije que estaba en lo cierto.