CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
It
NP
is
(S[dcl]\NP)/NP
a
NP/N
shameful
N/N
fact
N/S[em]
that
S[em]/S[dcl]
,
,
S[em]/S[dcl]
.
while
(S/S)/S[dcl]
there
NP[thr]
are
(S[dcl]\NP[thr])/NP
lands
N
where
(N\N)/S[dcl]
people
N
NP
*
suffer
(S[dcl]\NP)/PP
from
PP/NP
hunger
N
NP
*
PP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
N\N
>
0
,
,
within
(N\N)/NP
Japan
N
NP
*
N\N
>
0
(N\N)\(N\N)
∨
N\N
<
0
N
<
0
NP
*
S[dcl]\NP[thr]
>
0
S[dcl]
<
0
S/S
>
0
there
NP[thr]
are
(S[dcl]\NP[thr])/NP
many
N/N
households
N
N
>
0
NP
*
S[dcl]\NP[thr]
>
0
S[dcl]
<
0
S[dcl]
>
0
S[em]
>
0
N
>
0
N
>
0
NP
>
0
and
conj
restaurants
N
where
(N\N)/S[dcl]
much
N/N
food
N
N
>
0
NP
*
is
(S[dcl]\NP)/(S[pss]\NP)
thrown
S[pss]\NP
S[dcl]\NP
>
0
away
(S\NP)\(S\NP)
S[dcl]\NP
<
0
S[dcl]
<
0
N\N
>
0
N
<
0
NP
*
NP\NP
∨
NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="It" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">It</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="3" data-to="5" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="6" data-to="7" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="shameful" data-from="8" data-to="16" data-cat="N/N"> <tr><td class="token">shameful</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="fact" data-from="17" data-to="21" data-cat="N/S[em]"> <tr><td class="token">fact</td></tr> <tr><td class="cat" tabindex="0">N/S[em]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[em]/S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="that" data-from="22" data-to="26" data-cat="S[em]/S[dcl]"> <tr><td class="token">that</td></tr> <tr><td class="cat" tabindex="0">S[em]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="26" data-to="27" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]/S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S/S"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="while" data-from="28" data-to="33" data-cat="(S/S)/S[dcl]"> <tr><td class="token">while</td></tr> <tr><td class="cat" tabindex="0">(S/S)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="there" data-from="34" data-to="39" data-cat="NP[thr]"> <tr><td class="token">there</td></tr> <tr><td class="cat" tabindex="0">NP[thr]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP[thr]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="40" data-to="43" data-cat="(S[dcl]\NP[thr])/NP"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP[thr])/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="lands" data-from="44" data-to="49" data-cat="N"> <tr><td class="token">lands</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="where" data-from="50" data-to="55" data-cat="(N\N)/S[dcl]"> <tr><td class="token">where</td></tr> <tr><td class="cat" tabindex="0">(N\N)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="people" data-from="56" data-to="62" data-cat="N"> <tr><td class="token">people</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="suffer" data-from="63" data-to="69" data-cat="(S[dcl]\NP)/PP"> <tr><td class="token">suffer</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="from" data-from="70" data-to="74" data-cat="PP/NP"> <tr><td class="token">from</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="hunger" data-from="75" data-to="81" data-cat="N"> <tr><td class="token">hunger</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(N\N)\(N\N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="81" data-to="82" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="within" data-from="83" data-to="89" data-cat="(N\N)/NP"> <tr><td class="token">within</td></tr> <tr><td class="cat" tabindex="0">(N\N)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Japan" data-from="90" data-to="95" data-cat="N"> <tr><td class="token">Japan</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(N\N)\(N\N)</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP[thr]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S/S</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="there" data-from="96" data-to="101" data-cat="NP[thr]"> <tr><td class="token">there</td></tr> <tr><td class="cat" tabindex="0">NP[thr]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP[thr]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="are" data-from="102" data-to="105" data-cat="(S[dcl]\NP[thr])/NP"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP[thr])/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="many" data-from="106" data-to="110" data-cat="N/N"> <tr><td class="token">many</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="households" data-from="111" data-to="121" data-cat="N"> <tr><td class="token">households</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP[thr]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="122" data-to="125" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="restaurants" data-from="126" data-to="137" data-cat="N"> <tr><td class="token">restaurants</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="where" data-from="138" data-to="143" data-cat="(N\N)/S[dcl]"> <tr><td class="token">where</td></tr> <tr><td class="cat" tabindex="0">(N\N)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="much" data-from="144" data-to="148" data-cat="N/N"> <tr><td class="token">much</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="food" data-from="149" data-to="153" data-cat="N"> <tr><td class="token">food</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="154" data-to="156" data-cat="(S[dcl]\NP)/(S[pss]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pss]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="thrown" data-from="157" data-to="163" data-cat="S[pss]\NP"> <tr><td class="token">thrown</td></tr> <tr><td class="cat" tabindex="0">S[pss]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="away" data-from="164" data-to="168" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">away</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="168" data-to="169" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{It}{\catNP}{} \& \lexnode*{idm28}{is}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm50}{a}{\catNP/\catN}{} \& \lexnode*{idm65}{shameful}{\catN/\catN}{} \& \lexnode*{idm80}{fact}{\catN/\catS[em]}{} \& \lexnode*{idm102}{that}{\catS[em]/\catS[dcl]}{} \& \lexnode*{idm112}{,}{\cat,}{} \& \lexnode*{idm132}{while}{(\catS/\catS)/\catS[dcl]}{} \& \lexnode*{idm149}{there}{\catNP[thr]}{} \& \lexnode*{idm164}{are}{(\catS[dcl]\?\catNP[thr])/\catNP}{} \& \lexnode*{idm184}{lands}{\catN}{} \& \lexnode*{idm206}{where}{(\catN\?\catN)/\catS[dcl]}{} \& \lexnode*{idm226}{people}{\catN}{} \& \lexnode*{idm241}{suffer}{(\catS[dcl]\?\catNP)/\catPP}{} \& \lexnode*{idm258}{from}{\catPP/\catNP}{} \& \lexnode*{idm271}{hunger}{\catN}{} \& \lexnode*{idm290}{,}{\cat,}{} \& \lexnode*{idm305}{within}{(\catN\?\catN)/\catNP}{} \& \lexnode*{idm320}{Japan}{\catN}{} \& \lexnode*{idm333}{there}{\catNP[thr]}{} \& \lexnode*{idm348}{are}{(\catS[dcl]\?\catNP[thr])/\catNP}{} \& \lexnode*{idm368}{many}{\catN/\catN}{} \& \lexnode*{idm378}{households}{\catN}{} \& \lexnode*{idm393}{and}{\catconj}{} \& \lexnode*{idm409}{restaurants}{\catN}{} \& \lexnode*{idm424}{where}{(\catN\?\catN)/\catS[dcl]}{} \& \lexnode*{idm449}{much}{\catN/\catN}{} \& \lexnode*{idm459}{food}{\catN}{} \& \lexnode*{idm481}{is}{(\catS[dcl]\?\catNP)/(\catS[pss]\?\catNP)}{} \& \lexnode*{idm495}{thrown}{\catS[pss]\?\catNP}{} \& \lexnode*{idm505}{away}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm519}{.}{\cat.}{} \\ }; \binnode*{idm95}{idm102-cat}{idm112-cat}{.}{\catS[em]/\catS[dcl]}{} \unnode*{idm223}{idm226-cat}{*}{\catNP}{} \unnode*{idm268}{idm271-cat}{*}{\catNP}{} \binnode*{idm253}{idm258-cat}{idm268}{\FC{0}}{\catPP}{} \binnode*{idm234}{idm241-cat}{idm253}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm218}{idm223}{idm234}{\BC{0}}{\catS[dcl]}{} \binnode*{idm199}{idm206-cat}{idm218}{\FC{0}}{\catN\?\catN}{} \unnode*{idm317}{idm320-cat}{*}{\catNP}{} \binnode*{idm298}{idm305-cat}{idm317}{\FC{0}}{\catN\?\catN}{} \binnode*{idm279}{idm290-cat}{idm298}{\wedge}{(\catN\?\catN)\?(\catN\?\catN)}{} \binnode*{idm192}{idm199}{idm279}{\BC{0}}{\catN\?\catN}{} \binnode*{idm179}{idm184-cat}{idm192}{\BC{0}}{\catN}{} \unnode*{idm176}{idm179}{*}{\catNP}{} \binnode*{idm157}{idm164-cat}{idm176}{\FC{0}}{\catS[dcl]\?\catNP[thr]}{} \binnode*{idm144}{idm149-cat}{idm157}{\BC{0}}{\catS[dcl]}{} \binnode*{idm125}{idm132-cat}{idm144}{\FC{0}}{\catS/\catS}{} \binnode*{idm363}{idm368-cat}{idm378-cat}{\FC{0}}{\catN}{} \unnode*{idm360}{idm363}{*}{\catNP}{} \binnode*{idm341}{idm348-cat}{idm360}{\FC{0}}{\catS[dcl]\?\catNP[thr]}{} \binnode*{idm328}{idm333-cat}{idm341}{\BC{0}}{\catS[dcl]}{} \binnode*{idm120}{idm125}{idm328}{\FC{0}}{\catS[dcl]}{} \binnode*{idm90}{idm95}{idm120}{\FC{0}}{\catS[em]}{} \binnode*{idm75}{idm80-cat}{idm90}{\FC{0}}{\catN}{} \binnode*{idm60}{idm65-cat}{idm75}{\FC{0}}{\catN}{} \binnode*{idm45}{idm50-cat}{idm60}{\FC{0}}{\catNP}{} \binnode*{idm444}{idm449-cat}{idm459-cat}{\FC{0}}{\catN}{} \unnode*{idm441}{idm444}{*}{\catNP}{} \binnode*{idm474}{idm481-cat}{idm495-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm467}{idm474}{idm505-cat}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm436}{idm441}{idm467}{\BC{0}}{\catS[dcl]}{} \binnode*{idm417}{idm424-cat}{idm436}{\FC{0}}{\catN\?\catN}{} \binnode*{idm404}{idm409-cat}{idm417}{\BC{0}}{\catN}{} \unnode*{idm401}{idm404}{*}{\catNP}{} \binnode*{idm386}{idm393-cat}{idm401}{\wedge}{\catNP\?\catNP}{} \binnode*{idm40}{idm45}{idm386}{\BC{0}}{\catNP}{} \binnode*{idm21}{idm28-cat}{idm40}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm519-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
Il est honteux qu'en même temps qu'il existe des endroits où des personnes souffrent de la faim, à l'intérieur du Japon il y ait des maisons et des restaurants où beaucoup de nourriture est gaspillée.
nld
Het is een beschamend feit dat, terwijl er landen zijn waar mensen honger lijden, er in Japan veel huishoudens en restaurants zijn waar veel eten weggegooid wordt.
spa
Es vergonzoso que mientras hay tierras donde la gente sufre de hambre, en Japón hay muchos hogares y restaurantes donde mucha comida es tirada.