CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
It
NP
'll
(S[dcl]\NP)/(S[b]\NP)
take
(S[b]\NP)/(S[adj]\NP)
longer
(S\NP)\(S\NP)
(S[b]\NP)/(S[adj]\NP)
<
1
×
to
(S[to]\NP)/(S[b]\NP)
tell
((S[b]\NP)/S[qem])/NP
you
NP
(S[b]\NP)/S[qem]
>
0
how
S[qem]/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
do
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
S[to]\NP
>
0
S[qem]
>
0
S[b]\NP
>
0
S[to]\NP
>
0
than
((S\NP)\(S\NP))/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
just
(S\NP)/(S\NP)
go
S[b]\NP
S[b]\NP
>
0
S[to]\NP
>
0
(S\NP)\(S\NP)
>
0
S[to]\NP
<
0
S/S
*
ahead
S[adj]\NP
S[adj]\NP
>
1
×
S[b]\NP
>
0
and
conj
do
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
myself
(S\NP)\(S\NP)
S[b]\NP
<
0
.
.
S[b]\NP
.
(S[b]\NP)\(S[b]\NP)
∨
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="It" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">It</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="2" data-to="5" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="take" data-from="6" data-to="10" data-cat="(S[b]\NP)/(S[adj]\NP)"> <tr><td class="token">take</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="longer" data-from="11" data-to="17" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">longer</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[adj]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S/S"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="18" data-to="20" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/S[qem]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="tell" data-from="21" data-to="25" data-cat="((S[b]\NP)/S[qem])/NP"> <tr><td class="token">tell</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/S[qem])/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="26" data-to="29" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/S[qem]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[qem]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="how" data-from="30" data-to="33" data-cat="S[qem]/(S[to]\NP)"> <tr><td class="token">how</td></tr> <tr><td class="cat" tabindex="0">S[qem]/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="34" data-to="36" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="37" data-to="39" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="40" data-to="42" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[qem]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="than" data-from="43" data-to="47" data-cat="((S\NP)\(S\NP))/(S[to]\NP)"> <tr><td class="token">than</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="48" data-to="50" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="just" data-from="51" data-to="55" data-cat="(S\NP)/(S\NP)"> <tr><td class="token">just</td></tr> <tr><td class="cat" tabindex="0">(S\NP)/(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="go" data-from="56" data-to="58" data-cat="S[b]\NP"> <tr><td class="token">go</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S/S</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ahead" data-from="59" data-to="64" data-cat="S[adj]\NP"> <tr><td class="token">ahead</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Crossed Composition">> <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[b]\NP)\(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="65" data-to="68" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="do" data-from="69" data-to="71" data-cat="(S[b]\NP)/NP"> <tr><td class="token">do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="72" data-to="74" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="myself" data-from="75" data-to="81" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">myself</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="81" data-to="82" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)\(S[b]\NP)</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{It}{\catNP}{} \& \lexnode*{idm23}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm62}{take}{(\catS[b]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm76}{longer}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm116}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm146}{tell}{((\catS[b]\?\catNP)/\catS[qem])/\catNP}{} \& \lexnode*{idm160}{you}{\catNP}{} \& \lexnode*{idm173}{how}{\catS[qem]/(\catS[to]\?\catNP)}{} \& \lexnode*{idm192}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm213}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm225}{it}{\catNP}{} \& \lexnode*{idm244}{than}{((\catS\?\catNP)\?(\catS\?\catNP))/(\catS[to]\?\catNP)}{} \& \lexnode*{idm269}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm290}{just}{(\catS\?\catNP)/(\catS\?\catNP)}{} \& \lexnode*{idm304}{go}{\catS[b]\?\catNP}{} \& \lexnode*{idm314}{ahead}{\catS[adj]\?\catNP}{} \& \lexnode*{idm335}{and}{\catconj}{} \& \lexnode*{idm364}{do}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm376}{it}{\catNP}{} \& \lexnode*{idm384}{myself}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm398}{.}{\cat.}{} \\ }; \binnode*{idm51}{idm62-cat}{idm76-cat}{\BXC{1}}{(\catS[b]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm137}{idm146-cat}{idm160-cat}{\FC{0}}{(\catS[b]\?\catNP)/\catS[qem]}{} \binnode*{idm206}{idm213-cat}{idm225-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm185}{idm192-cat}{idm206}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm168}{idm173-cat}{idm185}{\FC{0}}{\catS[qem]}{} \binnode*{idm130}{idm137}{idm168}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm109}{idm116-cat}{idm130}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm283}{idm290-cat}{idm304-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm262}{idm269-cat}{idm283}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm233}{idm244-cat}{idm262}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm102}{idm109}{idm233}{\BC{0}}{\catS[to]\?\catNP}{} \unnode*{idm97}{idm102}{*}{\catS/\catS}{} \binnode*{idm90}{idm97}{idm314-cat}{\FXC{1}}{\catS[adj]\?\catNP}{} \binnode*{idm44}{idm51}{idm90}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm357}{idm364-cat}{idm376-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm350}{idm357}{idm384-cat}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm343}{idm350}{idm398-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm324}{idm335-cat}{idm343}{\wedge}{(\catS[b]\?\catNP)\?(\catS[b]\?\catNP)}{} \binnode*{idm37}{idm44}{idm324}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Es geht schneller, wenn ich das gerade selbst erledige, als wenn ich es dir erkläre.
fra
Ça prendra plus longtemps de t'expliquer comment faire que de simplement le faire moi-même.
rus
Мне дольше объяснять тебе, как это делается, чем взять и сделать самому.
rus
Мне дольше объяснять вам, как это делается, чем взять и сделать самому.
rus
Дольше объяснять, как это делается, чем взять и сделать самому.