CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
It
NP
's
(S[dcl]\NP)/NP
all
NP/NP
the
NP/N
same
N
NP
>
0
NP
>
0
S[dcl]\NP
>
0
to
((S\NP)\(S\NP))/NP
me
NP
(S\NP)\(S\NP)
>
0
.
.
(S\NP)\(S\NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="It" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">It</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'s" data-from="2" data-to="4" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">'s</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="all" data-from="5" data-to="8" data-cat="NP/NP"> <tr><td class="token">all</td></tr> <tr><td class="cat" tabindex="0">NP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="9" data-to="12" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="same" data-from="13" data-to="17" data-cat="N"> <tr><td class="token">same</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="18" data-to="20" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="me" data-from="21" data-to="23" data-cat="NP"> <tr><td class="token">me</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="23" data-to="24" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{It}{\catNP}{} \& \lexnode*{idm30}{'s}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm47}{all}{\catNP/\catNP}{} \& \lexnode*{idm62}{the}{\catNP/\catN}{} \& \lexnode*{idm72}{same}{\catN}{} \& \lexnode*{idm102}{to}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm118}{me}{\catNP}{} \& \lexnode*{idm126}{.}{\cat.}{} \\ }; \binnode*{idm57}{idm62-cat}{idm72-cat}{\FC{0}}{\catNP}{} \binnode*{idm42}{idm47-cat}{idm57}{\FC{0}}{\catNP}{} \binnode*{idm23}{idm30-cat}{idm42}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm91}{idm102-cat}{idm118-cat}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm80}{idm91}{idm126-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm16}{idm23}{idm80}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Das ist gehüpft wie gesprungen.
deu
Das ist mir einerlei.
ell
Μου είναι το ίδιο.
ita
È lo stesso per me.
nld
Mij maakt het niet uit.
nld
Het is me om het even.
por
Para mim, tanto faz.
rus
Мне без разницы.
rus
Мне всё равно.
spa
Me da igual.
tlh
vIpollaH pagh vIpolHa'laH.
ukr
Мені байдуже.
ukr
Мені все одно.