CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
It
NP
's
(S[dcl]\NP)/NP
not
(S\NP)\(S\NP)
(S[dcl]\NP)/NP
<
1
×
the
NP/N
end
N/PP
of
PP/NP
the
NP/N
world
N
NP
>
0
.
.
NP
.
PP
>
0
N
>
0
NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="It" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">It</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'s" data-from="2" data-to="4" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">'s</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="not" data-from="5" data-to="8" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">not</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/NP</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="9" data-to="12" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="end" data-from="13" data-to="16" data-cat="N/PP"> <tr><td class="token">end</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="17" data-to="19" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="20" data-to="23" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="world" data-from="24" data-to="29" data-cat="N"> <tr><td class="token">world</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="29" data-to="30" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{It}{\catNP}{} \& \lexnode*{idm32}{'s}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm44}{not}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm63}{the}{\catNP/\catN}{} \& \lexnode*{idm78}{end}{\catN/\catPP}{} \& \lexnode*{idm93}{of}{\catPP/\catNP}{} \& \lexnode*{idm113}{the}{\catNP/\catN}{} \& \lexnode*{idm123}{world}{\catN}{} \& \lexnode*{idm131}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm32-cat}{idm44-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/\catNP}{} \binnode*{idm108}{idm113-cat}{idm123-cat}{\FC{0}}{\catNP}{} \binnode*{idm103}{idm108}{idm131-cat}{.}{\catNP}{} \binnode*{idm88}{idm93-cat}{idm103}{\FC{0}}{\catPP}{} \binnode*{idm73}{idm78-cat}{idm88}{\FC{0}}{\catN}{} \binnode*{idm58}{idm63-cat}{idm73}{\FC{0}}{\catNP}{} \binnode*{idm16}{idm23}{idm58}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Es ist kein Weltuntergang.
deu
Das ist nicht das Ende der Welt.
deu
Davon geht die Welt nicht unter.
ell
Δε χάθηκε ο κόμος!
ell
Δεν ήρθε και το τέλος του κόσμου!
eng
It's not the end of the world!
eng
It isn't the end of the world.
fra
Ce n'est pas la fin du monde.
fra
C’est pas la fin du monde.
ita
Non è la fine del mondo.
nld
Dat is nog het einde van de wereld niet.
rus
Это не конец света.
spa
El mundo no se hundirá por eso.
spa
¡No es para tanto!
spa
No se acaba el mundo por eso.
ukr
Це не кінець світу.