CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
It
NP
's
((S[dcl]\NP[expl])/(S[to]\NP))/(S[adj]\NP)
up
(S[adj]\NP)/PP
to
PP/NP
you
NP
PP
>
0
S[adj]\NP
>
0
(S[dcl]\NP[expl])/(S[to]\NP)
>
0
to
(S[to]\NP)/(S[b]\NP)
make
(S[b]\NP)/NP
(S[to]\NP)/NP
>
1
(S[dcl]\NP[expl])/NP
>
1
the
NP/N
decision
N
NP
>
0
(S[X]\NP)\((S[X]\NP)/NP)
T
<
.
.
(S[X]\NP)\((S[X]\NP)/NP)
.
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="It" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">It</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP[expl])/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP[expl])/(S[to]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'s" data-from="2" data-to="4" data-cat="((S[dcl]\NP[expl])/(S[to]\NP))/(S[adj]\NP)"> <tr><td class="token">'s</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP[expl])/(S[to]\NP))/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="up" data-from="5" data-to="7" data-cat="(S[adj]\NP)/PP"> <tr><td class="token">up</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="8" data-to="10" data-cat="PP/NP"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="11" data-to="14" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP[expl])/(S[to]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[to]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="15" data-to="17" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="make" data-from="18" data-to="22" data-cat="(S[b]\NP)/NP"> <tr><td class="token">make</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[to]\NP)/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP[expl])/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[X]\NP)\((S[X]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="(S[X]\NP)\((S[X]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="23" data-to="26" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="decision" data-from="27" data-to="35" data-cat="N"> <tr><td class="token">decision</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[X]\NP)\((S[X]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="35" data-to="36" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[X]\NP)\((S[X]\NP)/NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{It}{\catNP}{} \& \lexnode*{idm43}{'s}{((\catS[dcl]\?\catNP[expl])/(\catS[to]\?\catNP))/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm68}{up}{(\catS[adj]\?\catNP)/\catPP}{} \& \lexnode*{idm85}{to}{\catPP/\catNP}{} \& \lexnode*{idm95}{you}{\catNP}{} \& \lexnode*{idm112}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm126}{make}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm167}{the}{\catNP/\catN}{} \& \lexnode*{idm177}{decision}{\catN}{} \& \lexnode*{idm185}{.}{\cat.}{} \\ }; \binnode*{idm80}{idm85-cat}{idm95-cat}{\FC{0}}{\catPP}{} \binnode*{idm61}{idm68-cat}{idm80}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm32}{idm43-cat}{idm61}{\FC{0}}{(\catS[dcl]\?\catNP[expl])/(\catS[to]\?\catNP)}{} \binnode*{idm103}{idm112-cat}{idm126-cat}{\FC{1}}{(\catS[to]\?\catNP)/\catNP}{} \binnode*{idm23}{idm32}{idm103}{\FC{1}}{(\catS[dcl]\?\catNP[expl])/\catNP}{} \binnode*{idm162}{idm167-cat}{idm177-cat}{\FC{0}}{\catNP}{} \unnode*{idm151}{idm162}{*}{(\catS[X]\?\catNP)\?((\catS[X]\?\catNP)/\catNP)}{} \binnode*{idm138}{idm151}{idm185-cat}{.}{(\catS[X]\?\catNP)\?((\catS[X]\?\catNP)/\catNP)}{} \binnode*{idm16}{idm23}{idm138}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
C'est à vous de prendre la décision.
fra
C'est à toi de prendre la décision.
ita
Sta a lei prendere la decisione.
ita
Sta a te prendere la decisione.
ita
Sta a voi prendere la decisione.
rus
Решение за вами.
rus
Решение за тобой.
rus
Тебе решать.
rus
Решать вам.
rus
Решать тебе.
rus
Решение принимать Вам.
rus
Вам решать.
rus
Решение принимать тебе.
spa
Depende de ti tomar la decisión.