CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Just
(S\NP)/(S\NP)
be
(S[b]\NP)/(S[adj]\NP)
glad
(S[adj]\NP)/S[dcl]
you
NP
're
(S[dcl]\NP)/(S[adj]\NP)
OK
S[adj]\NP
S[dcl]\NP
>
0
.
.
S[dcl]\NP
.
S[dcl]
<
0
S[adj]\NP
>
0
S[b]\NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Just" data-from="0" data-to="4" data-cat="(S\NP)/(S\NP)"> <tr><td class="token">Just</td></tr> <tr><td class="cat" tabindex="0">(S\NP)/(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="be" data-from="5" data-to="7" data-cat="(S[b]\NP)/(S[adj]\NP)"> <tr><td class="token">be</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="glad" data-from="8" data-to="12" data-cat="(S[adj]\NP)/S[dcl]"> <tr><td class="token">glad</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="13" data-to="16" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'re" data-from="16" data-to="19" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">'re</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="OK" data-from="20" data-to="22" data-cat="S[adj]\NP"> <tr><td class="token">OK</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="22" data-to="23" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm10}{Just}{(\catS\?\catNP)/(\catS\?\catNP)}{} \& \lexnode*{idm31}{be}{(\catS[b]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm52}{glad}{(\catS[adj]\?\catNP)/\catS[dcl]}{} \& \lexnode*{idm69}{you}{\catNP}{} \& \lexnode*{idm91}{'re}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm105}{OK}{\catS[adj]\?\catNP}{} \& \lexnode*{idm115}{.}{\cat.}{} \\ }; \binnode*{idm84}{idm91-cat}{idm105-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm77}{idm84}{idm115-cat}{.}{\catS[dcl]\?\catNP}{} \binnode*{idm64}{idm69-cat}{idm77}{\BC{0}}{\catS[dcl]}{} \binnode*{idm45}{idm52-cat}{idm64}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm24}{idm31-cat}{idm45}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10-cat}{idm24}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
Contentez-vous juste d'être sain et sauf.
fra
Contentez-vous juste d'être saine et sauve.
fra
Contente-toi juste d'être sain et sauf.
fra
Contente-toi juste d'être saine et sauve.
fra
Contentez-vous juste d'être sains et saufs.
fra
Contentez-vous juste d'être saines et sauves.
spa
Nada más alégrate de que estés bien.