CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ken
N
NP
*
did
(S[dcl]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
have
(S[b]\NP)/NP
the
NP/N
courage
N/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
try
(S[b]\NP)/NP
it
NP
S[b]\NP
>
0
S[to]\NP
>
0
N
>
0
NP
>
0
S[b]\NP
>
0
again
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[b]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Ken" data-from="0" data-to="3" data-cat="N"> <tr><td class="token">Ken</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="did" data-from="4" data-to="7" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">did</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="7" data-to="10" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="have" data-from="11" data-to="15" data-cat="(S[b]\NP)/NP"> <tr><td class="token">have</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="the" data-from="16" data-to="19" data-cat="NP/N"> <tr><td class="token">the</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="courage" data-from="20" data-to="27" data-cat="N/(S[to]\NP)"> <tr><td class="token">courage</td></tr> <tr><td class="cat" tabindex="0">N/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="28" data-to="30" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="try" data-from="31" data-to="34" data-cat="(S[b]\NP)/NP"> <tr><td class="token">try</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="it" data-from="35" data-to="37" data-cat="NP"> <tr><td class="token">it</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="again" data-from="38" data-to="43" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">again</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="43" data-to="44" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm11}{Ken}{\catN}{} \& \lexnode*{idm37}{did}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm51}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm79}{have}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm96}{the}{\catNP/\catN}{} \& \lexnode*{idm111}{courage}{\catN/(\catS[to]\?\catNP)}{} \& \lexnode*{idm130}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm151}{try}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm163}{it}{\catNP}{} \& \lexnode*{idm182}{again}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm196}{.}{\cat.}{} \\ }; \unnode*{idm8}{idm11-cat}{*}{\catNP}{} \binnode*{idm26}{idm37-cat}{idm51-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm144}{idm151-cat}{idm163-cat}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm123}{idm130-cat}{idm144}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm106}{idm111-cat}{idm123}{\FC{0}}{\catN}{} \binnode*{idm91}{idm96-cat}{idm106}{\FC{0}}{\catNP}{} \binnode*{idm72}{idm79-cat}{idm91}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm171}{idm182-cat}{idm196-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm65}{idm72}{idm171}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm19}{idm26}{idm65}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8}{idm19}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Ken hatte nicht den Mut, es noch einmal zu versuchen.
ita
Ken non aveva il coraggio di provarla ancora.
ita
Ken non aveva il coraggio di riprovarla.
ita
Ken non aveva il coraggio di provarlo ancora.
ita
Ken non aveva il coraggio di provarla di nuovo.
ita
Ken non aveva il coraggio di provarlo un'altra volta.
ita
Ken non aveva il coraggio di provarla un'altra volta.
ita
Ken non aveva il coraggio di riprovarlo.
ita
Ken non aveva il coraggio di provarlo di nuovo.
por
Ken não teve coragem de tentar de novo.
spa
Ken no tuvo el valor para volver a intentarlo.