CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Let
((S[b]\NP)/(S[b]\NP))/NP
me
NP
(S[b]\NP)/(S[b]\NP)
>
0
know
(S[b]\NP)/S[qem]
when
S[qem]/S[dcl]
you
NP
'll
(S[dcl]\NP)/(S[b]\NP)
return
(S[b]\NP)/NP
home
N
NP
*
.
.
NP
.
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
S[qem]
>
0
S[b]\NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Let" data-from="0" data-to="3" data-cat="((S[b]\NP)/(S[b]\NP))/NP"> <tr><td class="token">Let</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/(S[b]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="me" data-from="4" data-to="6" data-cat="NP"> <tr><td class="token">me</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="know" data-from="7" data-to="11" data-cat="(S[b]\NP)/S[qem]"> <tr><td class="token">know</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/S[qem]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[qem]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="when" data-from="12" data-to="16" data-cat="S[qem]/S[dcl]"> <tr><td class="token">when</td></tr> <tr><td class="cat" tabindex="0">S[qem]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="you" data-from="17" data-to="20" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="20" data-to="23" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="return" data-from="24" data-to="30" data-cat="(S[b]\NP)/NP"> <tr><td class="token">return</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="home" data-from="31" data-to="35" data-cat="N"> <tr><td class="token">home</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="35" data-to="36" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[qem]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Let}{((\catS[b]\?\catNP)/(\catS[b]\?\catNP))/\catNP}{} \& \lexnode*{idm37}{me}{\catNP}{} \& \lexnode*{idm52}{know}{(\catS[b]\?\catNP)/\catS[qem]}{} \& \lexnode*{idm69}{when}{\catS[qem]/\catS[dcl]}{} \& \lexnode*{idm84}{you}{\catNP}{} \& \lexnode*{idm99}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm120}{return}{(\catS[b]\?\catNP)/\catNP}{} \& \lexnode*{idm140}{home}{\catN}{} \& \lexnode*{idm148}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm21-cat}{idm37-cat}{\FC{0}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \unnode*{idm137}{idm140-cat}{*}{\catNP}{} \binnode*{idm132}{idm137}{idm148-cat}{.}{\catNP}{} \binnode*{idm113}{idm120-cat}{idm132}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm92}{idm99-cat}{idm113}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm79}{idm84-cat}{idm92}{\BC{0}}{\catS[dcl]}{} \binnode*{idm64}{idm69-cat}{idm79}{\FC{0}}{\catS[qem]}{} \binnode*{idm45}{idm52-cat}{idm64}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10}{idm45}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Lass mich wissen, wann du nach Hause zurückkehrst.
fra
Dites-moi quand vous allez retourner chez vous.
ita
Fatemi sapere quando tornerete a casa.
ita
Fammi sapere quando tornerai a casa.
por
Avise-me quando voltar para casa.
rus
Дай мне знать, когда ты вернёшься домой.
spa
Hazme saber cuándo vas a volver a la casa.