CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
My
NP/N
car
N
NP
>
0
was
(S[dcl]\NP)/(S[pss]\NP)
stolen
S[pss]\NP
S[dcl]\NP
>
0
last
((S\NP)\(S\NP))/((S\NP)\(S\NP))
night
(S\NP)\(S\NP)
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
.
S[dcl]
.
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="My" data-from="0" data-to="2" data-cat="NP/N"> <tr><td class="token">My</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="car" data-from="3" data-to="6" data-cat="N"> <tr><td class="token">car</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="7" data-to="10" data-cat="(S[dcl]\NP)/(S[pss]\NP)"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pss]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="stolen" data-from="11" data-to="17" data-cat="S[pss]\NP"> <tr><td class="token">stolen</td></tr> <tr><td class="cat" tabindex="0">S[pss]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="last" data-from="18" data-to="22" data-cat="((S\NP)\(S\NP))/((S\NP)\(S\NP))"> <tr><td class="token">last</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/((S\NP)\(S\NP))</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="night" data-from="23" data-to="28" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">night</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="28" data-to="29" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm18}{My}{\catNP/\catN}{} \& \lexnode*{idm28}{car}{\catN}{} \& \lexnode*{idm50}{was}{(\catS[dcl]\?\catNP)/(\catS[pss]\?\catNP)}{} \& \lexnode*{idm64}{stolen}{\catS[pss]\?\catNP}{} \& \lexnode*{idm85}{last}{((\catS\?\catNP)\?(\catS\?\catNP))/((\catS\?\catNP)\?(\catS\?\catNP))}{} \& \lexnode*{idm107}{night}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm121}{.}{\cat.}{} \\ }; \binnode*{idm13}{idm18-cat}{idm28-cat}{\FC{0}}{\catNP}{} \binnode*{idm43}{idm50-cat}{idm64-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm74}{idm85-cat}{idm107-cat}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm36}{idm43}{idm74}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13}{idm36}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm121-cat}{.}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Letzte Nacht wurde mein Auto gestohlen.
deu
Mein Auto ist letzte Nacht gestohlen worden.
fra
On m'a volé ma voiture hier soir.
fra
Ma voiture a été dérobée la nuit dernière.
ita
Ieri sera mi hanno rubato la macchina.
ita
Mi è stata rubata la macchina la scorsa notte.
ita
Mi hanno rubato la macchina la scorsa notte.
ita
Mi hanno rubato l'auto la scorsa notte.
ita
Mi è stata rubata l'automobile la scorsa notte.
ita
Mi è stata rubata l'auto la scorsa notte.
ita
Mi hanno rubato l'automobile la scorsa notte.
por
Roubaram meu carro ontem à noite.
por
Meu carro foi roubado ontem à noite.
rus
Мою машину вчера ночью украли.
spa
Anoche me robaron el coche.
spa
Me robaron el auto anoche.
ukr
Мою машину було вкрадено минулої ночі.