CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Previous
Next
Parse
auto
visual
HTML
LaTeX
She
NP
did
(S[dcl]\NP)/(S[b]\NP)
not
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[b]\NP)
<
1
×
move
S[b]\NP
,
,
S[b]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
and
conj
he
NP
came
(S[dcl]\NP)/PP
towards
PP/NP
her
NP
PP
>
0
S[dcl]\NP
>
0
with
((S\NP)\(S\NP))/NP
more
N/N
doubt
N
N
>
0
NP
*
and
conj
timidity
N
in
(N\N)/NP
his
NP/(N/PP)
face
N/PP
NP
>
0
N\N
>
0
N
<
0
NP
*
NP\NP
∨
NP
<
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
than
((S\NP)\(S\NP))/S[dcl]
she
NP
had
(S[dcl]\NP)/(S[pt]\NP)
ever
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[pt]\NP)
<
1
×
seen
S[pt]\NP
before
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[pt]\NP
<
0
S[dcl]\NP
>
0
S[dcl]
<
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
S[dcl]\S[dcl]
∨
S[dcl]
<
0
He
NP
was
(S[dcl]\NP)/PP
in
PP/NP
a
NP/N
state
N/PP
of
PP/NP
uncertainty
N
which
(N\N)/(S[dcl]\NP)
made
((S[dcl]\NP)/(S[adj]\NP))/NP
him
NP
(S[dcl]\NP)/(S[adj]\NP)
>
0
afraid
S[adj]\NP
S[dcl]\NP
>
0
N\N
>
0
N
<
0
NP
*
PP
>
0
N
>
0
NP
>
0
PP
>
0
S[dcl]\NP
>
0
lest
((S\NP)\(S\NP))/S[dcl]
some
NP/N
look
N/PP
or
conj
word
N/PP
(N/PP)\(N/PP)
∨
N/PP
<
0
of
PP/NP
his
NP/(N/PP)
PP/(N/PP)
>
1
N/(N/PP)
>
1
NP/(N/PP)
>
1
should
(S[dcl]\NP)/(S[b]\NP)
condemn
((S[b]\NP)/PP)/NP
him
NP
(S[b]\NP)/PP
>
0
to
PP/NP
a
NP/N
new
N/N
distance
N
N
>
0
from
(N\N)/NP
her
NP
N\N
>
0
N
<
0
NP
>
0
PP
>
0
S[b]\NP
>
0
S[dcl]\NP
>
0
;
;
and
conj
Dorothea
N
NP
*
NP\NP
∨
was
(S[dcl]\NP)/(S[adj]\NP)
afraid
(S[adj]\NP)/PP
of
PP/NP
her
NP
PP
>
0
S[adj]\NP
>
0
S[dcl]\NP
>
0
S[dcl]\NP
<
1
(S[dcl]\NP)\(S[dcl]\NP)
∨
S[dcl]\NP
<
0
S[dcl]/(N/PP)
<
1
×
OWN
N/N
emotion
N/PP
.
.
N/PP
.
N/PP
>
1
S[dcl]
>
0
(S\NP)\(S\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="She" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">She</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="did" data-from="4" data-to="7" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">did</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="not" data-from="8" data-to="11" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">not</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="move" data-from="12" data-to="16" data-cat="S[b]\NP"> <tr><td class="token">move</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="16" data-to="17" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="18" data-to="21" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="he" data-from="22" data-to="24" data-cat="NP"> <tr><td class="token">he</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="came" data-from="25" data-to="29" data-cat="(S[dcl]\NP)/PP"> <tr><td class="token">came</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="towards" data-from="30" data-to="37" data-cat="PP/NP"> <tr><td class="token">towards</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="her" data-from="38" data-to="41" data-cat="NP"> <tr><td class="token">her</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="with" data-from="42" data-to="46" data-cat="((S\NP)\(S\NP))/NP"> <tr><td class="token">with</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="more" data-from="47" data-to="51" data-cat="N/N"> <tr><td class="token">more</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="doubt" data-from="52" data-to="57" data-cat="N"> <tr><td class="token">doubt</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="58" data-to="61" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="timidity" data-from="62" data-to="70" data-cat="N"> <tr><td class="token">timidity</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="in" data-from="71" data-to="73" data-cat="(N\N)/NP"> <tr><td class="token">in</td></tr> <tr><td class="cat" tabindex="0">(N\N)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="his" data-from="74" data-to="77" data-cat="NP/(N/PP)"> <tr><td class="token">his</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="face" data-from="78" data-to="82" data-cat="N/PP"> <tr><td class="token">face</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="than" data-from="83" data-to="87" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">than</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="she" data-from="88" data-to="91" data-cat="NP"> <tr><td class="token">she</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[pt]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="had" data-from="92" data-to="95" data-cat="(S[dcl]\NP)/(S[pt]\NP)"> <tr><td class="token">had</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[pt]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ever" data-from="96" data-to="100" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">ever</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[pt]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[pt]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="seen" data-from="101" data-to="105" data-cat="S[pt]\NP"> <tr><td class="token">seen</td></tr> <tr><td class="cat" tabindex="0">S[pt]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="before" data-from="106" data-to="112" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">before</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="112" data-to="113" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[pt]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div> <div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="He" data-from="114" data-to="116" data-cat="NP"> <tr><td class="token">He</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="117" data-to="120" data-cat="(S[dcl]\NP)/PP"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="in" data-from="121" data-to="123" data-cat="PP/NP"> <tr><td class="token">in</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="124" data-to="125" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="state" data-from="126" data-to="131" data-cat="N/PP"> <tr><td class="token">state</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="132" data-to="134" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="uncertainty" data-from="135" data-to="146" data-cat="N"> <tr><td class="token">uncertainty</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="which" data-from="147" data-to="152" data-cat="(N\N)/(S[dcl]\NP)"> <tr><td class="token">which</td></tr> <tr><td class="cat" tabindex="0">(N\N)/(S[dcl]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="made" data-from="153" data-to="157" data-cat="((S[dcl]\NP)/(S[adj]\NP))/NP"> <tr><td class="token">made</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/(S[adj]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="him" data-from="158" data-to="161" data-cat="NP"> <tr><td class="token">him</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[adj]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="afraid" data-from="162" data-to="168" data-cat="S[adj]\NP"> <tr><td class="token">afraid</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="lest" data-from="169" data-to="173" data-cat="((S\NP)\(S\NP))/S[dcl]"> <tr><td class="token">lest</td></tr> <tr><td class="cat" tabindex="0">((S\NP)\(S\NP))/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]/(N/PP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP/(N/PP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="some" data-from="174" data-to="178" data-cat="NP/N"> <tr><td class="token">some</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N/(N/PP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N/PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="look" data-from="179" data-to="183" data-cat="N/PP"> <tr><td class="token">look</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(N/PP)\(N/PP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="or" data-from="184" data-to="186" data-cat="conj"> <tr><td class="token">or</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="word" data-from="187" data-to="191" data-cat="N/PP"> <tr><td class="token">word</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(N/PP)\(N/PP)</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/PP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP/(N/PP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="192" data-to="194" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="his" data-from="195" data-to="198" data-cat="NP/(N/PP)"> <tr><td class="token">his</td></tr> <tr><td class="cat" tabindex="0">NP/(N/PP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP/(N/PP)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/(N/PP)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP/(N/PP)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="should" data-from="199" data-to="205" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">should</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="condemn" data-from="206" data-to="213" data-cat="((S[b]\NP)/PP)/NP"> <tr><td class="token">condemn</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/PP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="him" data-from="214" data-to="217" data-cat="NP"> <tr><td class="token">him</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="218" data-to="220" data-cat="PP/NP"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="221" data-to="222" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="new" data-from="223" data-to="226" data-cat="N/N"> <tr><td class="token">new</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="distance" data-from="227" data-to="235" data-cat="N"> <tr><td class="token">distance</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N\N"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="from" data-from="236" data-to="240" data-cat="(N\N)/NP"> <tr><td class="token">from</td></tr> <tr><td class="cat" tabindex="0">(N\N)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="her" data-from="241" data-to="244" data-cat="NP"> <tr><td class="token">her</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\(S[dcl]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token=";" data-from="244" data-to="245" data-cat=";"> <tr><td class="token">;</td></tr> <tr><td class="cat" tabindex="0">;</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="and" data-from="246" data-to="249" data-cat="conj"> <tr><td class="token">and</td></tr> <tr><td class="cat" tabindex="0">conj</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Dorothea" data-from="250" data-to="258" data-cat="N"> <tr><td class="token">Dorothea</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP\NP</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="259" data-to="262" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[adj]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="afraid" data-from="263" data-to="269" data-cat="(S[adj]\NP)/PP"> <tr><td class="token">afraid</td></tr> <tr><td class="cat" tabindex="0">(S[adj]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="of" data-from="270" data-to="272" data-cat="PP/NP"> <tr><td class="token">of</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="her" data-from="273" data-to="276" data-cat="NP"> <tr><td class="token">her</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[adj]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Composition">< <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\(S[dcl]\NP)</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(N/PP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N/PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="OWN" data-from="277" data-to="280" data-cat="N/N"> <tr><td class="token">OWN</td></tr> <tr><td class="cat" tabindex="0">N/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="N/PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="emotion" data-from="281" data-to="288" data-cat="N/PP"> <tr><td class="token">emotion</td></tr> <tr><td class="cat" tabindex="0">N/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="288" data-to="289" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/PP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">N/PP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{She}{\catNP}{} \& \lexnode*{idm39}{did}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm53}{not}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm74}{move}{\catS[b]\?\catNP}{} \& \lexnode*{idm84}{,}{\cat,}{} \& \lexnode*{idm99}{and}{\catconj}{} \& \lexnode*{idm112}{he}{\catNP}{} \& \lexnode*{idm141}{came}{(\catS[dcl]\?\catNP)/\catPP}{} \& \lexnode*{idm158}{towards}{\catPP/\catNP}{} \& \lexnode*{idm168}{her}{\catNP}{} \& \lexnode*{idm187}{with}{((\catS\?\catNP)\?(\catS\?\catNP))/\catNP}{} \& \lexnode*{idm216}{more}{\catN/\catN}{} \& \lexnode*{idm226}{doubt}{\catN}{} \& \lexnode*{idm241}{and}{\catconj}{} \& \lexnode*{idm257}{timidity}{\catN}{} \& \lexnode*{idm272}{in}{(\catN\?\catN)/\catNP}{} \& \lexnode*{idm289}{his}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm301}{face}{\catN/\catPP}{} \& \lexnode*{idm322}{than}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm343}{she}{\catNP}{} \& \lexnode*{idm369}{had}{(\catS[dcl]\?\catNP)/(\catS[pt]\?\catNP)}{} \& \lexnode*{idm383}{ever}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm404}{seen}{\catS[pt]\?\catNP}{} \& \lexnode*{idm425}{before}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm439}{.}{\cat.}{} \\ }; \binnode*{idm28}{idm39-cat}{idm53-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm67}{idm74-cat}{idm84-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm21}{idm28}{idm67}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm153}{idm158-cat}{idm168-cat}{\FC{0}}{\catPP}{} \binnode*{idm134}{idm141-cat}{idm153}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm211}{idm216-cat}{idm226-cat}{\FC{0}}{\catN}{} \unnode*{idm208}{idm211}{*}{\catNP}{} \binnode*{idm284}{idm289-cat}{idm301-cat}{\FC{0}}{\catNP}{} \binnode*{idm265}{idm272-cat}{idm284}{\FC{0}}{\catN\?\catN}{} \binnode*{idm252}{idm257-cat}{idm265}{\BC{0}}{\catN}{} \unnode*{idm249}{idm252}{*}{\catNP}{} \binnode*{idm234}{idm241-cat}{idm249}{\wedge}{\catNP\?\catNP}{} \binnode*{idm203}{idm208}{idm234}{\BC{0}}{\catNP}{} \binnode*{idm176}{idm187-cat}{idm203}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm127}{idm134}{idm176}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm358}{idm369-cat}{idm383-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[pt]\?\catNP)}{} \binnode*{idm414}{idm425-cat}{idm439-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm397}{idm404-cat}{idm414}{\BC{0}}{\catS[pt]\?\catNP}{} \binnode*{idm351}{idm358}{idm397}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm338}{idm343-cat}{idm351}{\BC{0}}{\catS[dcl]}{} \binnode*{idm311}{idm322-cat}{idm338}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm120}{idm127}{idm311}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm107}{idm112-cat}{idm120}{\BC{0}}{\catS[dcl]}{} \binnode*{idm92}{idm99-cat}{idm107}{\wedge}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm3}{idm8}{idm92}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm453}{He}{\catNP}{} \& \lexnode*{idm475}{was}{(\catS[dcl]\?\catNP)/\catPP}{} \& \lexnode*{idm492}{in}{\catPP/\catNP}{} \& \lexnode*{idm507}{a}{\catNP/\catN}{} \& \lexnode*{idm522}{state}{\catN/\catPP}{} \& \lexnode*{idm537}{of}{\catPP/\catNP}{} \& \lexnode*{idm555}{uncertainty}{\catN}{} \& \lexnode*{idm570}{which}{(\catN\?\catN)/(\catS[dcl]\?\catNP)}{} \& \lexnode*{idm602}{made}{((\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP))/\catNP}{} \& \lexnode*{idm618}{him}{\catNP}{} \& \lexnode*{idm626}{afraid}{\catS[adj]\?\catNP}{} \& \lexnode*{idm647}{lest}{((\catS\?\catNP)\?(\catS\?\catNP))/\catS[dcl]}{} \& \lexnode*{idm686}{some}{\catNP/\catN}{} \& \lexnode*{idm712}{look}{\catN/\catPP}{} \& \lexnode*{idm733}{or}{\catconj}{} \& \lexnode*{idm741}{word}{\catN/\catPP}{} \& \lexnode*{idm760}{of}{\catPP/\catNP}{} \& \lexnode*{idm770}{his}{\catNP/(\catN/\catPP)}{} \& \lexnode*{idm796}{should}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm826}{condemn}{((\catS[b]\?\catNP)/\catPP)/\catNP}{} \& \lexnode*{idm840}{him}{\catNP}{} \& \lexnode*{idm853}{to}{\catPP/\catNP}{} \& \lexnode*{idm868}{a}{\catNP/\catN}{} \& \lexnode*{idm888}{new}{\catN/\catN}{} \& \lexnode*{idm898}{distance}{\catN}{} \& \lexnode*{idm913}{from}{(\catN\?\catN)/\catNP}{} \& \lexnode*{idm925}{her}{\catNP}{} \& \lexnode*{idm944}{;}{\cat;}{} \& \lexnode*{idm966}{and}{\catconj}{} \& \lexnode*{idm977}{Dorothea}{\catN}{} \& \lexnode*{idm992}{was}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm1013}{afraid}{(\catS[adj]\?\catNP)/\catPP}{} \& \lexnode*{idm1030}{of}{\catPP/\catNP}{} \& \lexnode*{idm1040}{her}{\catNP}{} \& \lexnode*{idm1055}{OWN}{\catN/\catN}{} \& \lexnode*{idm1072}{emotion}{\catN/\catPP}{} \& \lexnode*{idm1082}{.}{\cat.}{} \\ }; \binnode*{idm591}{idm602-cat}{idm618-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm584}{idm591}{idm626-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm563}{idm570-cat}{idm584}{\FC{0}}{\catN\?\catN}{} \binnode*{idm550}{idm555-cat}{idm563}{\BC{0}}{\catN}{} \unnode*{idm547}{idm550}{*}{\catNP}{} \binnode*{idm532}{idm537-cat}{idm547}{\FC{0}}{\catPP}{} \binnode*{idm517}{idm522-cat}{idm532}{\FC{0}}{\catN}{} \binnode*{idm502}{idm507-cat}{idm517}{\FC{0}}{\catNP}{} \binnode*{idm487}{idm492-cat}{idm502}{\FC{0}}{\catPP}{} \binnode*{idm468}{idm475-cat}{idm487}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm722}{idm733-cat}{idm741-cat}{\wedge}{(\catN/\catPP)\?(\catN/\catPP)}{} \binnode*{idm705}{idm712-cat}{idm722}{\BC{0}}{\catN/\catPP}{} \binnode*{idm751}{idm760-cat}{idm770-cat}{\FC{1}}{\catPP/(\catN/\catPP)}{} \binnode*{idm696}{idm705}{idm751}{\FC{1}}{\catN/(\catN/\catPP)}{} \binnode*{idm677}{idm686-cat}{idm696}{\FC{1}}{\catNP/(\catN/\catPP)}{} \binnode*{idm817}{idm826-cat}{idm840-cat}{\FC{0}}{(\catS[b]\?\catNP)/\catPP}{} \binnode*{idm883}{idm888-cat}{idm898-cat}{\FC{0}}{\catN}{} \binnode*{idm906}{idm913-cat}{idm925-cat}{\FC{0}}{\catN\?\catN}{} \binnode*{idm878}{idm883}{idm906}{\BC{0}}{\catN}{} \binnode*{idm863}{idm868-cat}{idm878}{\FC{0}}{\catNP}{} \binnode*{idm848}{idm853-cat}{idm863}{\FC{0}}{\catPP}{} \binnode*{idm810}{idm817}{idm848}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm789}{idm796-cat}{idm810}{\FC{0}}{\catS[dcl]\?\catNP}{} \unnode*{idm974}{idm977-cat}{*}{\catNP}{} \binnode*{idm959}{idm966-cat}{idm974}{\wedge}{\catNP\?\catNP}{} \binnode*{idm1025}{idm1030-cat}{idm1040-cat}{\FC{0}}{\catPP}{} \binnode*{idm1006}{idm1013-cat}{idm1025}{\FC{0}}{\catS[adj]\?\catNP}{} \binnode*{idm985}{idm992-cat}{idm1006}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm952}{idm959}{idm985}{\BC{1}}{\catS[dcl]\?\catNP}{} \binnode*{idm933}{idm944-cat}{idm952}{\wedge}{(\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP)}{} \binnode*{idm782}{idm789}{idm933}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm668}{idm677}{idm782}{\BXC{1}}{\catS[dcl]/(\catN/\catPP)}{} \binnode*{idm1065}{idm1072-cat}{idm1082-cat}{.}{\catN/\catPP}{} \binnode*{idm1048}{idm1055-cat}{idm1065}{\FC{1}}{\catN/\catPP}{} \binnode*{idm663}{idm668}{idm1048}{\FC{0}}{\catS[dcl]}{} \binnode*{idm636}{idm647-cat}{idm663}{\FC{0}}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm461}{idm468}{idm636}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm448}{idm453-cat}{idm461}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
por
Ela não se moveu e ele aproximou-se dela com mais hesitação e timidez no seu rosto do que ela alguma vez tinha visto antes. Ele estava num estado de incerteza que o fazia temer que algum olhar ou palavra sua o condenasse a uma nova distância dela; e a Dorothea tinha medo da SUA própria emoção.