CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
She
NP
told
((S[dcl]\NP)/S[em])/NP
him
NP
(S[dcl]\NP)/S[em]
>
0
that
S[em]/S[dcl]
he
NP
was
(S[dcl]\NP)/(S[adj]\NP)
right
S[adj]\NP
S[dcl]\NP
>
0
S[dcl]
<
0
S[em]
>
0
.
.
S[em]
.
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="She" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">She</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="told" data-from="4" data-to="8" data-cat="((S[dcl]\NP)/S[em])/NP"> <tr><td class="token">told</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)/S[em])/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="him" data-from="9" data-to="12" data-cat="NP"> <tr><td class="token">him</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[em]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="that" data-from="13" data-to="17" data-cat="S[em]/S[dcl]"> <tr><td class="token">that</td></tr> <tr><td class="cat" tabindex="0">S[em]/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="he" data-from="18" data-to="20" data-cat="NP"> <tr><td class="token">he</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="21" data-to="24" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="right" data-from="25" data-to="30" data-cat="S[adj]\NP"> <tr><td class="token">right</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="30" data-to="31" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[em]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{She}{\catNP}{} \& \lexnode*{idm32}{told}{((\catS[dcl]\?\catNP)/\catS[em])/\catNP}{} \& \lexnode*{idm46}{him}{\catNP}{} \& \lexnode*{idm64}{that}{\catS[em]/\catS[dcl]}{} \& \lexnode*{idm79}{he}{\catNP}{} \& \lexnode*{idm94}{was}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm108}{right}{\catS[adj]\?\catNP}{} \& \lexnode*{idm118}{.}{\cat.}{} \\ }; \binnode*{idm23}{idm32-cat}{idm46-cat}{\FC{0}}{(\catS[dcl]\?\catNP)/\catS[em]}{} \binnode*{idm87}{idm94-cat}{idm108-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm74}{idm79-cat}{idm87}{\BC{0}}{\catS[dcl]}{} \binnode*{idm59}{idm64-cat}{idm74}{\FC{0}}{\catS[em]}{} \binnode*{idm54}{idm59}{idm118-cat}{.}{\catS[em]}{} \binnode*{idm16}{idm23}{idm54}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
Elle lui a dit qu'il avait raison.
fra
Elle lui dit qu'il avait raison.
ita
Gli ha detto che aveva ragione.
ita
Lei gli disse che aveva ragione.
ita
Gli disse che aveva ragione.
ita
Lei gli ha detto che aveva ragione.
por
Ela lhe disse que estava certo.
rus
Она сказала ему, что он прав.
spa
Ella le dijo que él tenía razón.
tlh
bIlugh jatlh.
ukr
Вона сказала йому, що він має рацію.