CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Tell
((S[b]\NP)/NP)/NP
me
NP
(S[b]\NP)/NP
>
0
what
NP/(S[dcl]/NP)
you
NP
S[X]/(S[X]\NP)
T
>
eat
(S[dcl]\NP)/NP
S[dcl]/NP
>
1
,
,
I
NP
'll
(S[dcl]\NP)/(S[b]\NP)
tell
((S[b]\NP)/NP)/NP
you
NP
(S[b]\NP)/NP
>
0
what
NP/(S[dcl]/NP)
you
NP
S[X]/(S[X]\NP)
T
>
are
(S[dcl]\NP)/NP
S[dcl]/NP
>
1
.
.
S[dcl]/NP
.
NP
>
0
S[b]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]\S[dcl]
∨
S[dcl]/NP
<
1
×
NP
>
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Tell" data-from="0" data-to="4" data-cat="((S[b]\NP)/NP)/NP"> <tr><td class="token">Tell</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="me" data-from="5" data-to="7" data-cat="NP"> <tr><td class="token">me</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="what" data-from="8" data-to="12" data-cat="NP/(S[dcl]/NP)"> <tr><td class="token">what</td></tr> <tr><td class="cat" tabindex="0">NP/(S[dcl]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="you" data-from="13" data-to="16" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="eat" data-from="17" data-to="20" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">eat</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="20" data-to="21" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="I" data-from="22" data-to="23" data-cat="NP"> <tr><td class="token">I</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'ll" data-from="23" data-to="26" data-cat="(S[dcl]\NP)/(S[b]\NP)"> <tr><td class="token">'ll</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="tell" data-from="27" data-to="31" data-cat="((S[b]\NP)/NP)/NP"> <tr><td class="token">tell</td></tr> <tr><td class="cat" tabindex="0">((S[b]\NP)/NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="32" data-to="35" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="what" data-from="36" data-to="40" data-cat="NP/(S[dcl]/NP)"> <tr><td class="token">what</td></tr> <tr><td class="cat" tabindex="0">NP/(S[dcl]/NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[X]/(S[X]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="you" data-from="41" data-to="44" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[X]/(S[X]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="are" data-from="45" data-to="48" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">are</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="48" data-to="49" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm19}{Tell}{((\catS[b]\?\catNP)/\catNP)/\catNP}{} \& \lexnode*{idm33}{me}{\catNP}{} \& \lexnode*{idm46}{what}{\catNP/(\catS[dcl]/\catNP)}{} \& \lexnode*{idm79}{you}{\catNP}{} \& \lexnode*{idm87}{eat}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm106}{,}{\cat,}{} \& \lexnode*{idm119}{I}{\catNP}{} \& \lexnode*{idm134}{'ll}{(\catS[dcl]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm164}{tell}{((\catS[b]\?\catNP)/\catNP)/\catNP}{} \& \lexnode*{idm178}{you}{\catNP}{} \& \lexnode*{idm191}{what}{\catNP/(\catS[dcl]/\catNP)}{} \& \lexnode*{idm224}{you}{\catNP}{} \& \lexnode*{idm232}{are}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm244}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm19-cat}{idm33-cat}{\FC{0}}{(\catS[b]\?\catNP)/\catNP}{} \unnode*{idm72}{idm79-cat}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm65}{idm72}{idm87-cat}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm155}{idm164-cat}{idm178-cat}{\FC{0}}{(\catS[b]\?\catNP)/\catNP}{} \unnode*{idm217}{idm224-cat}{\FTR}{\catS[X]/(\catS[X]\?\catNP)}{} \binnode*{idm210}{idm217}{idm232-cat}{\FC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm203}{idm210}{idm244-cat}{.}{\catS[dcl]/\catNP}{} \binnode*{idm186}{idm191-cat}{idm203}{\FC{0}}{\catNP}{} \binnode*{idm148}{idm155}{idm186}{\FC{0}}{\catS[b]\?\catNP}{} \binnode*{idm127}{idm134-cat}{idm148}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm114}{idm119-cat}{idm127}{\BC{0}}{\catS[dcl]}{} \binnode*{idm99}{idm106-cat}{idm114}{\wedge}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm58}{idm65}{idm99}{\BXC{1}}{\catS[dcl]/\catNP}{} \binnode*{idm41}{idm46-cat}{idm58}{\FC{0}}{\catNP}{} \binnode*{idm3}{idm10}{idm41}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Sage mir, was du isst, und ich sage dir, wer du bist.
deu
Sagt mir, was ihr esst, und ich sage euch, was ihr seid.
deu
Sag mir, was du isst, und ich sage dir, was du bist.
deu
Sage mir, was Du isst, und ich sage Dir, was Du bist.
deu
Sagen Sie mir, was Sie essen, und ich sage Ihnen, was Sie sind.
fra
Dites-moi ce que vous mangez, je vous dirai qui vous êtes.
fra
Dis-moi ce que tu manges, je te dirai ce que tu es.
ita
Mi dica cosa mangia, le dirò quello che è.
ita
Dimmi cosa mangi, ti dirò quello che sei.
ita
Ditemi cosa mangiate, vi dirò quello che siete.
rus
Скажи мне, что ты ешь, и я скажу тебе, кто ты.
ukr
Скажи мені, що ти їси, і я скажу тобі, хто ти такий.