CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
That
NP
's
(S[dcl]\NP)/S[for]
for
(S[for]/(S[to]\NP))/NP
you
NP
S[for]/(S[to]\NP)
>
0
to
(S[to]\NP)/(S[b]\NP)
decide
S[b]\NP
S[to]\NP
>
0
S[for]
>
0
.
.
S[for]
.
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="That" data-from="0" data-to="4" data-cat="NP"> <tr><td class="token">That</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="'s" data-from="4" data-to="6" data-cat="(S[dcl]\NP)/S[for]"> <tr><td class="token">'s</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/S[for]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[for]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[for]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[for]/(S[to]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="for" data-from="7" data-to="10" data-cat="(S[for]/(S[to]\NP))/NP"> <tr><td class="token">for</td></tr> <tr><td class="cat" tabindex="0">(S[for]/(S[to]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="you" data-from="11" data-to="14" data-cat="NP"> <tr><td class="token">you</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[for]/(S[to]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="15" data-to="17" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="decide" data-from="18" data-to="24" data-cat="S[b]\NP"> <tr><td class="token">decide</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[for]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="24" data-to="25" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[for]</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{That}{\catNP}{} \& \lexnode*{idm23}{'s}{(\catS[dcl]\?\catNP)/\catS[for]}{} \& \lexnode*{idm54}{for}{(\catS[for]/(\catS[to]\?\catNP))/\catNP}{} \& \lexnode*{idm68}{you}{\catNP}{} \& \lexnode*{idm83}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm97}{decide}{\catS[b]\?\catNP}{} \& \lexnode*{idm107}{.}{\cat.}{} \\ }; \binnode*{idm45}{idm54-cat}{idm68-cat}{\FC{0}}{\catS[for]/(\catS[to]\?\catNP)}{} \binnode*{idm76}{idm83-cat}{idm97-cat}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm40}{idm45}{idm76}{\FC{0}}{\catS[for]}{} \binnode*{idm35}{idm40}{idm107-cat}{.}{\catS[for]}{} \binnode*{idm16}{idm23-cat}{idm35}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Das musst du entscheiden.
deu
Das müsst ihr entscheiden.
deu
Das müssen Sie entscheiden.
fra
C'est à vous d'en décider.
fra
C'est à toi de décider.
fra
C'est à vous de décider.
fra
C'est à toi de voir.
ita
Sta a voi decidere.
ita
Sta a lei decidere.
ita
Sta a te decidere.
rus
Тебе решать.
rus
Вам решать.
tgl
Ikaw na ang magdedesiyon niyan.
ukr
Вам вирішувати.